معرفی نانوحباب‌ها، خواص و کاربرد آن‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده علوم و فناوری نانو، دانشگاه صنعتی شریف، تهران

2 پژوهشکده علوم و فناوری نانو، دانشگاه صنعتی شریف، تهران دانشکده فیزیک، دانشگاه صنعتی شریف، تهران

3 دانشکده مهندسی و علم مواد، دانشگاه صنعتی شریف، تهران

چکیده

فضاهای خالی نانومتری پرشده از گاز در توده‌ی یک مایع و یا در فصل مشترک جامد–مایع به ترتیب نانوحباب‌های توده و سطحی نامیده می‌شوند. هرچند، وجود نانوحباب‌ها تا سالها در هاله‌ای از ابهام قرار داشت، خوشبختانه با ظهور تکنیک‌های تصویربرداری در مقیاس نانومتری امکان اثبات این حفرات نانومتری فراهم شد. نانوحباب‌ها بواسطه‌ی بروز خواص ویژه و منحصر بفردی مانند پایداری بیش از انتظار، دارا بودن بار سطحی منفی و ایجاد گونه‌های فعال اکسیژن، در سال‌های اخیر توجه بسیار زیادی را در زمینه‌های مختلف مانند صنعت آب کشاورزی و پزشکی به خود معطوف کرده‌اند. سه روش عمده تولید نانوحباب‌ها شامل تشکیل خودبخودی، تولید از طریق فوق اشباعی گاز و در نهایت ایجاد اختلالات در مایع می‌باشد. این مقاله، بطور خلاصه به تعریف و طبقه بندی انواع نانوحباب‌ها، خواص آنها از جمله تئوری‌ها و شواهد موافق و مخالف پایداری نانوحباب‌ها و در نهایت روش‌های تولید و کاربردهای مهم صنعتی آنها می‌پردازد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Introduction of nanobubbles, their properties and applications

[1] A. Agarwal, Ng WJ., Y.Liu, Principle
and applications of microbubble and
nanobubble technology for water
treatment. Chemosphere, 84, 1175–80,
(2011).
[2] C. Wu, K. Nesset, J. Masliyah, Z. Zu,
Generation and characterization of
submicron size bubbles. Adv. Colloid
Interface Sci., 179–182,123–132,
(2012).
[3] L. Shu, Q. Wang, H. Ma, P. Huang, J.
Li, T. Kikuchi, Effect of micro-bubbles
on coagulation flotation process of
dyeing wastewater. Sep. Purif.
Technol., 71, 337–346, (2010).
[4] M. Takahashi, K. Chiba, P. Li, Freeradical
generation from collapsing
microbubbles in the absence of a
dynamic stimulus. J. Phys. Chem. B,
111(6), 1343–1347, (2007).
[5] K. Terasaka, A. Hirabayashi, T.
Nishino, S. Fujioka, D. Kobayashi,
Development of microbubble aerator
for waste water treatment using aerobic
activated sludge, Chem Eng Sci.,
66(14) 3172–3179, (2011).
[6] J. R. Seddon, D. Lohse, Nanobubbles
and micropancakes: gaseous domains
on immersed substrates J. Phys.:
Condens. Matter, 23 133001 (22pp),
(2011).
[7] M. Alheshibri, J. Qian, M. Jehannin,
V.S.J. Criag, A history of nanobubbles,
Langmuir, 32, 11086–11100, (2016).
[8] H.X. Zhang, Z. Ziaodong, J. Sun, Z.
Zhang, G. Li, Fang H., X. Xiao, X.
Zeng, J. Hu, Detection of novel
gaseous states at the highly oriented
pyrolytic graphite–water interface
Langmuir, 23, 1778–1783, (2007).
[9] D. Sette, F. Wanderling, Nucleation by
cosmic rays in ultrasonic cavitation.
Phys. Rev., 125 (2), 409−417, (1962).
نانوحباب
ذره
دنیای نانو، سال پانزدهم ) 1398 (، شماره پنجاه و پنج
46
فصلنامه
علمی-
ترویجی
انجمن ISC
نانو فناوری
ایران
دنیای نانو
[10] E.A. Hemmingsen, Cavitation in gassupersaturated
solutions. J. Appl.
Phys., 46 (1), 213−218 (1975).
[11] B.D. Johnson, R.C. Cooke Generation
of stabilized microbubbles in seawater.
Science, 213 (4504) 209−211, (1981).
[12] V. S. J. Craig, B. W. Ninham, R.M.
Pashley, The Effect of Electrolytes on
Bubble Coalescence in Water. J. Phys.
Chem., 97 (39), 10192−10197, 1993.
[13] E.T. Degens, R.P. Herzen, H.K.
Wong, , W.G. Deuser, H.W. Jannasch,
Lake Kivu: Structure, chemistry and
biology of an East African Rift Lake.
Geol. Rundsch, 62 245−277, (1973).
[14] N.F. Bunkin, F.V. Bunkin, Bubstons
are stable gas microbubbles in highly
diluted solutions of electrolytes.
Zhurnal Eksperimentalnoi I
Teoreticheskoi Fiziki, 101, 512−527,
(1992).
[15] J.L. Parker, P.M. Claesson, P. Attard,
Bubbles, cavities, and the long-ranged
attraction between hydrophobic
surfaces, J. Phys. Chem., 98 (34),
8468-8480, (1994).
[16] M.A. Hampton, A.V. Nguyen,
Nanobubbles and the nanobubble
bridging capillary force. Adv Colloid
Interface Sci., 154, 30-55, (2010).
[17] J D. Miller, Y. Hu, S. Veeramasuneni,
Y. Lu, In situ detection of butane gas at
a hydrophobic silicon surface Colloids
Surf. A, 154, 137–47, (1999).
[18] N. Ishida, T. Inoue, M. Miyahara, K.
Higashitani, Nano bubbles on a
hydrophobic surface in water observed
by tapping-mode atomic
forcemicroscopy. Langmuir 16(16),
6377–80, (2000).
[19] S.T. Lou, Z. Q. Ouyang, Y. Zhang,
Nanobubbles on solid surface imaged
by atomic force microscopy. J Vac Sci
Technol B, 18(5) 2573–2575, (2000).
[20] J.L. Demangeat, Gas nanobubbles and
aqueous nanostructures: the crucial
role of dynamization, Homeopathy,
104, 101-115, (2015).
[21] K. Ohgaki, N.Q. Khanh, Y. Joden, A.
Tsuji, T. Nakagawa, Physicochemical
approach to nanobubble solutions,
Chem. Eng. Sci. 65(3), 1296–300,
(2010).
[22] T. Temesgen, T.T. Bui, M. Han, T. IL.
Kim, H. Park, Micro and Nanobubble
Technologies as a New Horizon for
Water Treatment Techniques: A
Review, Adv. Colloid Interface Sci.,
246, 40−51, (2017).
[23] A. Agarwal, Ng W. Jern, Y. Liu,
Principle and applications of
microbubble and nanobubble
technology for water treatment,
Chemosphere, 84, 1175-1180, (2011).
[24] S. Liu, Y. Kawagoe, Y. Makino, S.
Oshita, Effects of nanobubbles on the
physicochemical properties of water:
the basis for peculiar properties of
water containing nanobubbles, Chem.
Eng. Sci., 93, 250-256, (2013).
[25] N.F. Bunkin, A.V. Shkirin, N.V.
Suyazov, V.A. Babenko, A.A. Sychev,
N.V. Penkov, et al., formation and
dynamics of ion stabilized gas
nanobubble phase in the bulk of
aqueous NaCl solutions, J. Phys.
Chem. B 120, 1291-1303, (2016).
[26] K. Ohgaki, N. Q. Khanh, Y. Joden, A.
Tsuji, T. Nakagawa, Physicochemical
approach to nanobubble solutions.
Chem Eng Sci., 65(3), 1296–300,
(2010).
[27] J. H. Weijs, J.R.T. Seddon, D. Lohse,
Diffusive Shielding Stabilizes Bulk
) دنیای نانو، سال پانزدهم ) 1398
47
فصلنامه
علمی-
ترویجی
انجمن ISC
نانو فناوری
ایران
دنیای نانو
Nanobubble Clusters, Chem. Phys.
Chem., 13, 2197–2204, (2012).
[28] R. Zangi, Water confined to a slab
geometry: a review of recent computer
simulation studies J. Phys.: Condens.
Matter, 16, 5371–5388, (2004).
[29] V. Kolivo, S. Miroslav, Bovine serum
albumin film as a template for
controlled nanopancake and
nanobubble formation: In situ atomic
force microscopy and nanolithography
study, Colloids and Surfaces
B:Biointerfaces, 91, 213–219, (2012).
[30] K. Kikuchi, A. Ioka, T. Oku, , Y.
Tanaka, Y. Saihara, , Z. Ogumi,
Concentration Determination of
Oxygen Nanobubbles in Electrolyzed
Water. J. Colloid Interface Sci. 329,
306−309, (2009).
[31] K. Kikuchi, S. Nagata, Y. Tanaka, Y.
Salhara, Z. Ogumi, Characteristics of
hydrogen nanobubbles in solutions
obtained with water electrolysis. J.
Electroanal. Chem., 600, 303−310,
(2007).
[32] K. Kikuchi, H. Takeda, B. Rabolt, T.
Okaya, Z. Ogumi, Y. Saihara, H.
Noguchi, Hydrogen Particles and
Supersaturation in Alkaline Water
From an Alkali-Ion-Water
Electrolyzer. J. Electroanal. Chem.,
506, 22−27, (2001).
[33] N. K. Dube, B. E. Oeffinger, M. A.
Wheatley, Development and
characterization of a nano-sized
surfactant stabilized contrast agent for
diagnostic, Ultrasound, 42, 343−347,
(2004).
[34] S. Calgaroto, K.Q. Wilberg, J. Rubio,
On the nanobubbles interfacial
properties and future applications in
flotation, Miner. Eng., 60, 33-40,
(2014).
[35] M. Jannesari, O. Akhavan, H.R.
Madaah Hosseini, Graphene oxide in
generation of nanobubbles using
controllable microvortices of jet flows,
Carbon, 138 8-17, (2018).
[36] S. Liu, , S. Oshita, Y. Makino, Q.
Wang, Y. Kawagoe, T. Uchida,
Oxidative capacity of nanobubbles and
its effect on seed germination, ACS
Sustainable Chemistry & Engineering,
4, 1347-1353, (2015).
[37] S. Yoshida, M. Kitano, H. Eguchi,
Water uptake and growth of cucumber
plants (Cucumis sativus L.) under
control of dissolved O2 concentration
in hydroponics. Acta Hortic., 440,
199–204, (1996).
[38] E. Owusu Ansah, A. Yavari, S.
Mandal, U. Banerjee, Distinct
mitochondrial retrograde signals
control the G1=S cell cycle checkpoint,
Nature genetics, 40, 356-361, (2008).
[39] S. Liu, S. Oshita, S. Kawabata, Y.
Makino, T. Yoshimoto, Identification
of ROS Produced by Nanobubbles and
Their Positive and Negative Effects on
Vegetable Seed Germination,
Langmuir, 32, 11295−11302, (2016).
[40] J.M.S. Davies, C.V. Lowry, K. J. A.
Davies, Transient adaptation to
oxidative stress in yeast, Arch.
Biochem. Biophys, 317, 1−6, (1995).
[41] L. Wang, X. Miao, J. Ali, T. Lyu, G.
Pan, Quantification of oxygen
Nanobubbles in particulate matters and
potential applications in remediation of
anaerobic environment. ACS Omega,
3, 10624–10630, (2018).
[42] S. Liu, S. Oshita, D. Q. Thuyet, et al.
Antioxidant activity of hydrogen
nanobubbles in water with different
reactive oxygen species both in vivo
دنیای نانو، سال پانزدهم ) 1398 (، شماره پنجاه و پنج
48
فصلنامه
علمی-
ترویجی
انجمن ISC
نانو فناوری
ایران
دنیای نانو
and in vitro, Langmuir, 34, 11878-
11885, (2018).
[43] S.H. Oh, J.G. Han, J. M. Kim, Longterm
stability of hydrogen nanobubble
fuel, Fuel, 158, 399–404, (2015).
[44] S.H. Oh, S.H. Yoon, H. Song, J.G.
Han, J-M. Kim, Effect of hydrogen
nanobubble addition on combustion
characteristics of gasoline engine, Int.
J. Hydrogen Energy, 38, 14849–14853,
(2013).
[45] S. Khuntia, S. Kumar, Microbubbleaided
water and wastewater
purification: a review, Rev. Chem.
Eng., 28, 191–221, (2012)
[46] A. J. Atkinson, O. G. Apul, O.
Schneider, S. Garcia-Segura, P.
Westerhoff, Nanobubble technologies
offer opportunities to improve water
treatment, Acc. Chem. Res., 52,
1196−1205, (2019).
[47] D. Hanigan, L. Truong, M. Simonich,
R. Tanguay, P. Westerhoff, Zebrafish
embryo toxicity of 15 chlorinated,
brominated, and iodinated disinfection
by-products. J. Environ. Sci., 58
302−310, (2017).
[48] M. Takahashi, K. Chiba, P. Li, Freeradical
generation from collapsing
microbubbles in the absence of a
dynamic stimulus. J. Phys. Chem.
B;111, ,1343–1347 (2007).
[49] S. W. Krasner, W. A. Mitch, P.
Westerhoff, A. Dotson, Formation and
Control of Emerging C- and N-DBPs
in Drinking Water. J. Am. Water
Works Assoc., 104, 582−595, (2012).
[50] S. Pabi, A. Amarnath, R. Goldstein, L.
Reekie, Electricity Use and
Management in the Municipal Water
Supply and Wastewater Industries,
Electric Power Research Institute,
(2013).
[51] E. Metclaf, Wastewater Engineering:
Treatment and Reuse, 4th ed.,
McGraw-Hill: Boston, (2013).
[52] N. Jamshidi, N. Mostoufi,
Measurement of Bubble Size
Distribution in Activated Sludge
Bubble Column Bioreactor. Biochem.
Eng. J., 125, 212−220, (2017).
[53] J. C. Crittenden, R. R. Trussel, D. W.
Hand, K. J. Howe, G. Tchobanoglous,
Water Treatment Principles and
Design, 3rd ed.; Wiley: Hoboken, NJ,
2012.
[54] S. Garcia-Segura, M. M. S. G. Eiband,
J. V. de Melo, C. A. Martínez-Huitle,
Electrocoagulation and advanced
electrocoagulation processes: A
general review about the fundamentals,
emerging applications and its
association with other technologies. J.
Electroanal. Chem., 801, 267-299,
(2017).
[55] O. D.Schneider, J. E.Tobiason,
Preozonation Effects on Coagulation.
J. Am. Water Works Assoc., 92,
74−87, (2000).
[56] J. E.Tobiason, G. S.Johnson, P.
Westerhoff, B. Vigneswaran, Particle
size and chemical effects on contact
filtration performance. J. Environ.
Eng., 119, 520−539, (1993).