نانوذرات کیتوسان: روشهای تولید و کاربرد در بستهبندی مواد غذایی

نویسنده

موسسه تحقیقات فنی و مهندسی کشاورزی - بخش تحقیقات صنایع غذایی

چکیده

سال های زیادی است که پلیمرهای مصنوعی به دلیل قابلیت های بسیار زیاد، در علوم مختلف از جمله بسته بندی مواد غذایی، استفاده می شوند. اما در سال های اخیر، برای رفع مسایل زیست محیطی و اقتصادی ناشی از کاربرد پلیمرهای مصنوعی در صنعت، پلیمرهای طبیعی به شکل های مختلف چندسازه ها، فیلم ها، و پوشش های خوراکی و غیر خوراکی وارد صنایع بسته بندی شده اند. به دلیل برخی خواص کاربردی نسبتا ضعیف پلیمرهای طبیعی، از نانوذرات برای تقویت شبکه پلیمری آنها استفاده می شود که بهبود خواص مکانیکی، فیزیکی، و میکروبی فیلم های حاصل را در بر دارد. در میان مواد پلیمری طبیعی، کیتوزان یکی از پلیمرهای زیست تخریب-پذیری است که با موفقیت توسعه یافته است. کیتوزان، این پلی ساکارید طبیعی و نانوکیتوزان حاصل از آن، به دلیل داشتن خواص غیرسمی، مکانیکی و ضدمیکروبی مناسب، سازگاری طبیعی با بافت های زنده و تجزیه پذیری، توجه ویژه ای را به خود جلب کرده است. مقاله حاضر، به بحث پیرامون کیتوزان، نانوکیتوزان و اثر استفاده از نانوکیتوزان در تهیه مواد بسته بندی می پردازد. هم چنین، به مهم ترین روش های تهیه نانوکیتوزان اشاره می شود. نانوذرات کیتوزان وقتی به مقدار بهینه در ساختار انواع مواد بسته بندی استفاده شوند، خواص جدیدی مانند افزایش مقاومت کششی فیلم حاصل، کاهش نفوذپذیری پوشش یا فیلم بسته بندی نسبت به رطوبت و گازها، و خواص ضدمیکروبی قابل توجه ای را ایجاد می‌کنند.

کلیدواژه‌ها


عنوان مقاله [English]

Chitosan nanoparticles: production methods and application in food packaging

نویسنده [English]

  • B. Tajodini

کلیدواژه‌ها [English]

  • Chitosan
  • Nanochitosan
  • Nanoparticles
  • Packaging
  • Shelf life
 
[1] B. Tajeddin, Preparation and Characterization of Natural Nanocomposites for Food Packaging Applications, donyayenano, 10 (37), 38-45, (2014).
[2] Y. Radhakrishnan, G. Gopal, C.C. Lakshmanan, and K.S. Nandakumar, Chitosan Nanoparticles for Generating Novel Systems for Better Applications: a review, Journal of Molecular and Genetic Medicine, S4: 005, (2015).
[3] M.A. Del Nobile, A. Conte, G.C. Buonocore, A.L. Incoronato, A. Massaro, and O. Panza, Active Packaging by Extrusion Processing of Recyclable and Biodegradable Polymers, Journal of Food Engineering, 93, 1–6, (2008).
[4] M.A. Mohammed, J.T.M. Syeda, K.M. Wasan, and E.K. Wasan, An Overview of Chitosan Nanoparticles and its Application in Non-Parenteral Drug Delivery. Pharmaceutics, 9(4), 53, (2017).
[5] S. Naskar, S. Sharma, K. Kuotsu, Chitosan-Based Nanoparticles: an Overview of Biomedical Applications and its Preparation, Journal of Drug Delivery Science and Technology, 49, 66-81, (2019).
[6] S.M. Asiri, F. Alam Khan, and A. Bozkurt, Synthesis of Chitosan Nanoparticles, Chitosan-Bulk, Chitosan Nanoparticles Conjugated with Glutaraldehyde with Strong Anti-Cancer Proliferative Capabilities, Artificial Cells, Nanomedicine, and Biotechnology, 46(53), S1152-S1161, (2018).
[7] T.A., Ahmed, and B.M. Aljaeid, Preparation, Characterization, and Potential Application of Chitosan, Chitosan Derivatives, and Chitosan Metal Nanoparticles in Pharmaceutical Drug Delivery. Drug Design, Development and Therapy, 10, 483-507, (2016).
[8] K. Divya, and M.S. Jisha, Chitosan Nanoparticles Preparation and Applications, Environmental Chemistry Letters, 16, 101-112, (2018).
[9] L-M. Zhao, L-E. Shi, Z-L., Zhang, J-M. Chen, D-D. Shi, J. Yang, and Z-X. Tang, Preparation and Application of Chitosan Nanoparticles and Nanofibers, Brazilian Journal of Chemical Engineering, 28(3), 353-362, (2011).
[10] P.K. Dutta, S. Tripathi, G.K. Mehrotra, and J. Dutta, Perspectives for Chitosan Based Antimicrobial Films in Food Applications, Food Chemistry, 114(4), 1173-1182, (2009).
[11] M.V. Ravi Kumar, A Review of Chitin and Chitosan Applications, Reactive & Functional Polymers, 46, 1-27, (2001). 
[12] T.A. Sonia, and C.P. Sharma, Chitosan and its Derivatives for Drug Delivery Perspective, Advances in Polymer Science, 243, 23-54, (2011).
[13] A.N. Malathi, K.S. Santhosh, and N. Udaykumar, Recent Trends of Biodegradable Polymer: Biodegradable Films for Food Packaging and Application of Nanotechnology in Biodegradable Food Packaging, Current Trends in Technology and Science, 3(2), 73-79, (2014).
[14] G.R. Strobl, The Physics of Polymers, Springer: Berlin/Heidelberg, Germany, ISBN 978-3-540-25278-8, (2007).
[15] S.Y. Park, S.T. Jun, and K.S. Marsh, Physical Properties of PVOH/Chitosan-Blended Films Cast from Different Solvents. Food Hydrocolloids, 15, 499-502, (2001).
[16] J.H. Park, G. Saravanakumar, K. Kim, and I.C. Kwon, Targeted Delivery of Low Molecular Drugs Using Chitosan and its Derivatives. Advanced Drug Delivery Reviews, 62(1), 28–41, (2010).
[17] U. Garg, S. Chauhan, U. Nagaich, and N. Jain, Current Advances in Chitosan Nanoparticles Based Drug Delivery and Targeting, Advanced Pharmaceutical Bulletin, 9(2), 195-204, (2019).

[18] S. Kumar, F.  Ye, S. Dobretsov, and  J. Dutta, Chitosan Nanocomposite Coatings for Food, Paints, and Water Treatment Applications, Applied Science, 9, 2409, (2019).

[19] S.A. Agnihotri, and T.M. Aminabhavi, Chitosan Nanoparticles for Prolonged Delivery of Timolol Maleate. Drug Develop Ind Pharm, 33, 1254-1262, (2007).

[20] A. Grenha, Chitosan Nanoparticles: a Survey of Preparation Methods, Journal of Drug Targeting, 20(4), 291-300, (2012).
[21] M. Martelli, T. Barros, M. Moura, L. Mattoso, and O. Assis, Effect of Chitosan Nanoparticles and Pectin Content on Mechanical Properties and Water Vapor Permeability of Banana Puree Films, Journal of Food Science, 78, 98-104, (2012).
[22] Y. Ohya, M. Shiratani, H. Kobayashi, and T. Ouchi, Release Behaviour of 5-Fluorouracil from Chitosan-gel Nanospheres Immobilizing 5-Fluorouracil Coated with Polysaccharides and their Cell Specific Cytotoxicity. Pure and Applied Chemistry, A31, 629-642, (1994).
[23] S.M. Asghari, S. Ebrahimi Samani, Z. Seraj, K. Khajeh, and S. Hosseinkhani, Optimizing the Synthesis of Chitosan Nanoparticles, Modares Journal of Biotechnology, 4(2), 21-29, (2013).
[24] K.S. Sudheesh, K. Ajay, A. Omotayo, and B. Bhekie, Chitosan-Based Nanomaterials: A State- of- the-Art Review, International Journal of Biological Macromolecules, pp. 46-58, (2013).
[25] E. Rochima, S.Y. Azhary, R.I. Pratama, C. Panatarani, and I.M. Joni, Preparation and Characterization of Nano Chitosan from Crab Shell Waste by Beads-Milling Method, International Conference on Food Science and Engineering, IOP Publishing, IOP Conf. Series: Materials Science and Engineerin, doi:10.1088/1757-899X/193/1/012043, (2017).
[26] R. Chang, R. Jian, J. Yu, and X. Ma, Fabrication and Characterisation of Chitosan Nanoparticles/ Plasticised-Starch Composites, Journal of Food Chemistry, 120, 736–74, (2009).

[27]S.  Kumar, A. Mukherjee, and  J. Dutta, Chitosan Based Nanocomposite Films and Coatings: Emerging Antimicrobial Food Packaging Alternatives, Trends in Food Science & Technology, 97, 196-209, (2020).

[28] T.M.P. Ngo, T.H., Nguyen, T.M.Q. Dang, T.X. Tran, and P. Rachtanapun, Characteristics and Antimicrobial Properties of Active Edible Films Based on Pectin and Nanochitosan. International Journal of Molecular Sciences, 21, 2224, (2020).
[29] T.V. Duncan, Applications of Nanotechnology in Food Packaging and Food Safety: Barrier materials, Antimicrobials and Sensors, Journal of Colloid and Interface Science, 363, 1-24, (2011).
[30] L. Vikele, M. Laka, I. Sable, L. Rozenberga, U. Grinfelds, J. Zoldners, R. Passas, and E. Mauret, Effect of Chitosan on Properties of Paper for Packaging, Cellulose Chemistry and Technology, 51(1-2), 67-73, (2017).
[31] M.S. Brewer, Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Food Science and Food Safety, 10, 221-247, (2011).
[32] V. Siracusa, P. Rocculi, S. Romani, and R. Marco Dalla, Biodegradable Polymers for Food Packaging, Trends in Food Science & Technology, 19, 634-643, (2008).
[33] K. Vu, R.G. Hollingsworth, E. Leroux, S. Salmieri, and M. Lacroix, Development of Edible Bioactive Coating Based on Modified Chitosan for Increasing the Shelf Life of Strawberries, Food Research International, 44, 198–203, (2010).
[34] L. Yien Ing, N. Zin, A. Sarwar, and H. Katas, Antifungal Activity of Chitosan Nanoparticles and Correlation with their Physical Properties. International Journal of Biomaterials, 632698, 1-9, (2012).
[35] Z. Shi, K.G. Neoh, E.T. Kang, and W. Wang, Antibacterial and Mechanical Properties of Bone Cement Impregnated with Chitosan Nanoparticles, Biomaterials, 11, 2440-2449, (2006).
[36] L. Paz, A. Reain, K. Howard, D. Sutherland, and L. Wejse, Antimicrobial Effect of Chitosan Nanoparticles on Streptococcus Mutans Biofilms. Applied and Environmental Microbiology, 77, 3892-3895, (2011).
[37] K. Vijayalakshmi, B.M. Devi, P.N. Sudha, J. Venkatesan, and S. Anil, Synthesis, Characterization and Applications of Nanochitosan/Sodium Alginate/Microcrystalline Cellulose Film, Journal of Nanomedicine & Nanotechnology, 7(6), 1-11, (2016).
[38] R.S. Ghorabi, and A. Khodanazary, Effects of Chitosan and Nano-Chitosan as Coating Materials on the Quality Properties of Large Scale Tongue Sole Cynoglossus arel During Super-Chilling Storage,  Iranian Journal of Fisheries Sciences, DOI: 10.22092/ijfs.2018.119689, (2017).