بررسی پارامترهای موثر بر ویسکوزیته نانو سیالات

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مکانیک، دانشگاه فنی و حرفه ای، تهران، ایران.

چکیده

نانو سیالات که از توزیع ذرات با ابعاد نانو در سیالات معمولی حاصل می‌شوند، نسل جدیدی از سیالات با پتانسیل بسیار زیاد در کاردبرهای صنعتی هستند. اندازه ذرات مورد استفاده در نانو سیالات از 1 نانومتر تا 100 نانومتر می‌باشد. ویسکوزیته یکی از ویژگی های مهم نانو سیالات بوده که تأثیر بسیار مهمی بر روی انتقال حرارت، دارد. در این تحقیق پارامترهای موثر بر ویسکوزیته نانو سیالات بررسی شد برای تخمین زدن ویسکوزیته نانو سیال می توان از مدل‌های نظری مختلف استفاده نمود. اما نتایج تجربی نشان می دهد که ویسکوزیته نانوسیال مطابقت خوبی با مدل‌های نظری ندارد. این تفاوت به دلیل تأثیر حرکت براونی، مفروضات ایجاد شده در هنگام استخراج مدل‌ها، رویکرد مدل‌سازی ریاضی و تکنیک‌های پراکندگی است. در واقعیت ویسکوزیته نانوسیال به پارامترهای زیادی مانند سیالات پایه، کسر حجمی ذرات، اندازه ذرات، شکل ذرات، دما، نرخ برش، مقدار pH، سورفکتانت‌ها، تکنیک‌های پراکندگی، توزیع اندازه ذرات و تجمع ذرات بستگی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating parameters affecting the viscosity of nanofluids

نویسندگان [English]

  • Bahman Rahmatinejad
  • Farzin Azimpour Shishevan
Department of Mechanical Engineering, Technical and Vocational University (TVU),Tehran, Iran.
چکیده [English]

Nanofluids, which are obtained from the distribution of nano-sized particles in normal fluids, are a new generation of fluids with great potential in industrial applications. The size of the particles used in nanofluids ranges from 1 nm to 100 nm. Viscosity is one of the important characteristics of nanofluids, which has a very important effect on heat transfer. In this research, the parameters affecting the viscosity of nanofluids were investigated. Different theoretical models can be used to estimate the viscosity of nanofluids. But the experimental results show that the viscosity of the nanofluid does not correspond well with the theoretical models. This difference is due to the effect of Brownian motion, the assumptions made when deriving the models, the mathematical modeling approach and the scattering techniques. In reality, the viscosity of nanofluid depends on many parameters such as base fluids, particle volume fraction, particle size, particle shape, temperature, shear rate, pH value, surfactants, dispersion techniques, particle size distribution and particle aggregation.

کلیدواژه‌ها [English]

  • Nanofluids
  • viscosity
  • temperature
  • shear rate
  • volume fraction
[1] A. Einstein, Ann. Phys, 19, 289-306, (1906).
[2] H. De Bruijn, Recueil des Travaux Chimiques des Pays‐Bas, 61(12), 863-874, (1942).
[3] V. H. Eilers, Kolloid-Zeitschrift, 97(3), 313-321, (1941).
[4] V. Vand, The Journal of Physical Chemistry, 52(2):, 277-299, (1948).
[5] N. Saitô, I. Journal of the Physical Society of Japan, 5(1), 4-8, (1950).
[6] W. C. Wang, P.G. Reinhall, and S. Yee, Measurement Science and Technology, 10(4)316, (1999).
[7] R. Simha, Journal of Applied physics, 23(9), 1020-1024, (1952).
[8] I. M. Krieger, T.J. Dougherty, Transactions of the Society of Rheology, 3(1), 137-152, (1959).
[9] L. E. Nielsen, Journal of Applied Physics, 41(11), 4626-4627, (1970).
[10] M. Mooney, Journal of colloid science, 6(2), 162-170, (1951).
[11] G. Batchelor, Journal of fluid mechanics, 83(1), 97-117, (1977).
[12] T. S. Lundgren, Journal of fluid mechanics, 51(2), 273-299, (1972).
[13] H. C. Brinkman, The Journal of chemical physics, 20(4), 571-571, (1952).
[14] H. Chen, Y. Ding, C. Tan, New journal of physics,. 9(10), 367, (2007).
[15] N. Frankel, A. Acrivos, hemical Engineering Science, 22(6), 847-853 (1967).
[16] N. S. Cheng, A.W.-K. Law, Powder technology, 129(1-3), 156-160, (2003).
[17] T. Kitano, T. Kataoka, T. Shirota, Rheologica Acta, 20, 207-209, (1981).
[18] J. Bicerano, J.F. Douglas, D.A. Brune, Model for the viscosity of particle dispersions, (1999).
[19] W. J. Tseng, C. N. Chen, Materials Science and Engineering: A, 347(1-2), 145-153, (2003).
[20] A. L. Graham, Applied Scientific Research, 37, 275-286, (1981).
[21] N. Masoumi, N. Sohrabi, A. Behzadmehr, Journal of Physics D: Applied Physics, 42(5), 055501, (2009).
[22] B. C. Pak, Y. I. Cho, Experimental Heat Transfer an International Journal, 11(2), 151-170, (1998).
[23] D. P. Kulkarni, D. K. Das, G. A. Chukwu, Journal of nanoscience and nanotechnology, 6(4), 1150-1154, (2006).
[24] C. Nguyen, International journal of heat and fluid flow, 28(6), 1492-1506, (2007).
[25] P. K. Namburu, International journal of thermal sciences, 48(2), 290-302, (2009).
[26] M. Chandrasekar, S. Suresh, A. C. Bose, Experimental Thermal and Fluid Science, 34(2), 210-216, (2010).
[27] E. Abu-Nada, International Journal of Heat and Fluid Flow, 30(4), 679-690, (2009).
[28] S. Masoud Hosseini, A. Moghadassi, D. Henneke, Journal of Thermal Analysis and Calorimetry, 100(3), 873-877, (2010).
[29] J. Avsec, M. Oblak, International Journal of Heat and Mass Transfer, 50(21-22), 4331-4341, (2007).
[30] M. Corcione, Energy conversion and management, 52(1), 789-793, (2011).
[31] J. P. Meyer, Heat Transfer Engineering, 37(5), 387-421, (2016).
[32] W. J. Tseng, K. C. Lin, Materials science and engineering: A, 355(1-2), 186-192, (2003).
[33] S. E. B. Maı̈ga, Superlattices and Microstructures, 35(3-6), 543-557, (2004).
[34] J. Buongiorno, Convective transport in nanofluids, (2006).
[35] R. Prasher, Applied physics letters, 89(13), 133108, (2006).
[36] H. Chen, Chemical physics letters, 444(4-6), 333-337, (2007).
[37] W. Williams, J. Buongiorno, L. W. Hu, Journal of heat transfer, 130(4), (2008).
[38] U. Rea, International Journal of Heat and Mass Transfer, 52(7-8), 2042-2048, (2009).
[39] W. Duangthongsuk, S. Wongwises, Experimental thermal and fluid science, 33(4), 706-714, (2009).
[40] L. Godson, Experimental Heat Transfer, 23(4), 317-332, (2010).
[41] C. Ho, International Journal of Thermal Sciences, 49(8),1345-1353, (2010).
[42] K. Khanafer, K. Vafai, International journal of heat and mass transfer, 54(19-20), 4410-4428, (2011)
[43] S. Bobbo, Experimental Thermal and Fluid Science, 36, 65-71, (2012).
[44] L. S. Sundar, Chemical physics letters, 554, 236-242, (2012).
[45] M. H. Esfe, S. Saedodin, Experimental thermal and fluid science, 55, 1-5, (2014).
[46] S. J. Palm, G. Roy, C. T. Nguyen, Applied thermal engineering, 26(17-18), 2209-2218, (2006).
[47] W. Yu, International Journal of Heat and Mass Transfer, 52(15-16), 3606-3612, (2009).
[48] D. P. Kulkarni, D. K. Das, S. L. Patil, Journal of Nanoscience and Nanotechnology, 7(7), 2318-2322, (2007).
[49] P. K. Namburu, Experimental Thermal and Fluid Science, 32(2), 397-402, (2007)
[50] B. C. Sahoo, Journal of Nanotechnology in Engineering and Medicine, 3(4), (2012).
[51] K. R. Priya, K. Suganthi, K. Rajan, International Journal of Heat and Mass Transfer, 55(17-18), 4734-4743, (2012).
[52] J. Koo, C. Kleinstreuer, International journal of heat and mass transfer, 48(13), 2652-2661, (2005).
[53] M. Heyhat, International Communications in Heat and Mass Transfer, 39(8), 1272-1278, (2012).
[54] S. Murshed, K. Leong, C. Yang, International journal of thermal sciences, 47(5), 560-568, (2008).
[55] S. K. Das, N. Putra, W. Roetzel, International journal of heat and mass transfer, 46(5), 851-862, (2003).
[56] N. Putra, W. Roetzel, S. K. Das, Heat and mass transfer, 39(8-9), 775-784, (2003).
[57] C. Nguyen, International journal of thermal sciences, 47(2), 103-111, (2008).
[58] J. M. Prausnitz, R. N. Lichtenthaler, E. G. De Azevedo, Molecular thermodynamics of fluid-phase equilibria, (1998).
[59] H. Renon, J. M. Prausnitz, AIChE journal, 14(1), 135-144, (1968).
[60] B. Rahmatinejad, M. Abbasgholipour, B. Mohammadi Alasti, International Journal of Nano Dimension, 12(3), 252-271, (2021).
[61] S. A. Adio, M. Sharifpur, J. P. Heat Transfer Engineering, 36(14-15), 1241-1251, (2015).
[62] H. Xie, L. Chen, Q. Wu, High Temperatures High Pressures, 37(2), (2008).
[63] Y. He, International journal of heat and mass transfer, 50(11-12), 2272-2281, (2007).
[64] P. Namburu, Micro & Nano Letters, 2(3), 67-71, (2007).
[65] J. Chevalier, O. Tillement, F. Ayela, Applied physics letters, 91(23), 233103, (2007).
[66] E. V. Timofeeva, Nanoscale research letters, 6, 1-7, (2011).
[67] E. V. Timofeeva, J. L. Routbort, D. Singh, Journal of applied physics, 106(1), 014304,( 2009)
[68] S. Ferrouillat, Applied thermal engineering, 51(1-2), 839-851, (2013).
[69] X. Wang, X. Xu, S. U. Choi, Journal of thermophysics and heat transfer, 13(4), 474-480, (1999).
[70] F. Duan, D. Kwek, A. Crivoi, Nanoscale research letters, 6(1), 1-5, (2011).
[71] W. Xian-Ju, L. Xin-Fang, Chinese Physics Letters, 26(5), 056601, (2009).
[72] Z. Jia-Fei, Chinese Physics Letters, 26(6), 066202, (2009).
[73] F. Rubio-Hernández, Journal of colloid and interface science, 298(2), 967-972, (2006).
[74] B. Rahmatinejad, M. Abbasgholipour, B. M. Alasti, Journal of Agricultural Machinery, 12(3), 281-299, (2020).
[75] N. Jamshidi, M. Farhadi, D. D. Ganji, K. Sedighi, International Journal of Engineering, 25(3), 201-209, 2012.
[76] M. Hadadian, S. Samiee, H. Ahmadzadeh. E. Goharshadi, Physical Chemistry Research, 1(1), 1-33, (2013).
[77] K. Y. Kwak, C. Y. Kim, Korea-Australia Rheology Journal, 17(2), 35-40, (2005).
[78] B. Rahmatinejad, Journal of Nanostructures, 12(3), 642-659, (2022).
[79] Y. H. Hung, W. C. Chou, International Journal of Chemical Engineering and Applications, 3(5), 347-359, (2012).
[80] Q. Li, Y. Xuan, J. Wang, International journal of thermophysics, 27, 103-113, (2006).
[81] L. Vekas, D. Bica, M. V. Avdeev, China particuology, 5(1-2), 43-49, (2007).
[82] M. R. Jolly, J. W. Bender, J. D. Carlson, passive damping and isolation, 3327, 262-275, (1998)
[83] Q. Li, Y. Xuan, J. Wang, Experimental Thermal and Fluid Science, 30(2), 109-116, (2005).
[84] G. Latini, Journal of Physics: Conference Series, IOP Publishing, (2017).
[85] A. Ghadimi, R. Saidur, H. S. C. Metselaar, International journal of heat and mass transfer, (2011).
[86] A. H. Al-Waeli, M. T. Chaichan, K. Sopian, H. A. Kazem, Case Studies in Thermal Engineering, (2019).
دوره 19، شماره 70
خرداد 1402
صفحه 34-51
  • تاریخ دریافت: 25 فروردین 1402
  • تاریخ بازنگری: 15 اردیبهشت 1402
  • تاریخ پذیرش: 29 اردیبهشت 1402