بررسی محاسباتی جذب سطحی آنتی‌بیوتیک سفالکسین بر روی سطح فولرن (C20)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 باشگاه پژوهشگران جوان و نخبگان، دانشگاه آزاد اسلامی واحد یادگار امام خمینی(ره) شهر ری، تهران

2 گروه شیمی دارویی، دانشکده داروسازی و علوم دارویی، دانشگاه علوم پزشکی آزاد تهران، تهران، ایران

3 گروه شیمی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد یادگار امام خمینی (ره) شهرری، تهران

چکیده

در این مطالعه، عملکرد نانوساختار فولرن (20C) به عنوان جاذب و حسگر برای حذف و شناسایی آنتی‌بیوتیک سفالکسین، با استفاده از نظریه تابعی چگالی مورد بررسی قرار گرفت. مقادیر منفی انرژی جذب سطحی نشان داد که برهم‌کنش سفالکسین با نانوساختار از لحاظ تجربی امکان‌پذیر است. مقادیر منفی تغییرات آنتالپی و تغییرات انرژی آزاد گیبس نشان داد که جذب سطحی سفالکسین بر روی سطح جاذب گرما‌زا و خودبه‌خودی می‌باشد. مقادیر ثابت تعادل ترمودینامیکی نشان‌دهنده آن بود که برهم‌کنش سفالکسین با 20C حالتی برگشت‌پذیر، تعادلی و دوطرفه دارد. نتایج حاصل از محاسبات اوربیتال‌های طبیعی پیوندی نشان داد که جذب سفالکسین بر روی سطح فولرن، به-دلیل عدم تشکیل پیوندهای کوالانسی میان‌جاذب و جذب‌شونده، ماهیتی فیزیکی دارد. اثر دما بر روی فرآیند جذب مورد بررسی قرار گرفت و نتایج به‌دست‌ آمده نشان داد که برهم‌کنش سفالکسین با نانوساختار فولرن در دماهای پایین‌تر، قوی‌تر است. طیف‌های چگالی حالات محاسبه شده، نشان داد که مقدار گاف انرژی C20 افزایشی 9/296% را در حین برهم‌کنش با سفالکسین تجربه نموده و میزان آن از 950/1 به 750/7 الکترون ولت، افزایش یافته است. در نتیجه از این نانوساختار می‌توان به‌عنوان اصلاح‌گری جدید برای ساخت حسگرهای الکتروشیمیایی نوین برای شناسایی سفالکسین، استفاده نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Computational Study on Cefalexin Antibiotic Adsorption on the Surface of Fullerene (C20)

نویسندگان [English]

  • Mohammad Reza Jalali Sarvestani 1
  • Mahnaz Qomi 2
  • Roya Ahmadi 3
  • Mohammad Yousefi 3
1 Young Researchers and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran
2 Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
3 Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

In this study, the performance of fullerene (C20) as an adsorbent and sensor for the removal and detection of cefalexin was scrutinized by density functional theory computations. The negative values of adsorption energies showed cefalexin interaction with the nanostructure is experimentally possible. The negative values of enthalpy changes and Gibbs free energy variations demonstrated cefalexin adsorption on the surfaces of the adsorbent is exothermic and spontaneous. The values of thermodynamic constants indicated cefalexin interaction with C20 is reversible, equilibrium and two-sided. The NBO results showed cefalexin adsorption on the pristine fullerene is a physisorption because of non-formation of chemical bonds. The influence of temperature on the adsorption process was inspected and the obtained results showed cefalexin interaction with the nanostructure is more favorable at lower temperatures. The computed DOS spectrums showed the bandgap of C20 experienced a +296.9% decline from 1.950 (eV) to 7.750 (eV). Hence, this nanostructure can be employed as a sensing material for the development of new electrochemical sensors for the detection of cefalexin.

کلیدواژه‌ها [English]

  • Cefalexin
  • Fullerene
  • Density functional theory
  • Adsorption
  • Sensor
  • Removal of Contaminants
[1]  M. Arab, M. G. Faramarz, and K. Hashim, Water (Switzerland) 14, 344, (2022).
[2] S. Carli, P. Anfossi, R. Villa, G. Castellani, G. Mengozzi, and C. Montesissa, J Vet Pharmacol Ther 22, 308-313, (1999).
[3]. A. A. M. Stolker and U. A. T. Brinkman, J Chromatogr A 1067, 15-53, (2005).
[4] J. F. Fisher, S. O. Meroueh, and S. Mobashery, Chem Rev 105, 395-424. (2005).
[5] A. D. Dayan, Vet Microbiol 35, 213-226, (1993).
[6] F. Perez, A. M. Hujer, K. M. Hujer, B. K. Decker, P. N. Rather, and R. A. Bonomo, Antimicrob Agents Chemother 51, 3471 (2007).
[7] Commission Regulation, "No. 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin," Official Journal of European Union,  15, 1-72, 2010.
[8] H. Xie, W. Ma, L. Liu, W. Chen, C. Peng, C. Xu, and L. Wang, Anal Chim Acta 634, 129-133, (2009).
[9] W. Yu, Y. Sang, T. Wang, W. Liu, and X. Wang, Food Sci \& Nutr 8, 1001-1011, (2020).
[10] L. Wang, X. Li, Y. Wang, C. Wang, D. Ye, L. Zhou, X. Hu, Y. Ke, and X. Xia, J Chromatogr B, Anal Technol Biomed Life  Sci 1124, 233-238, (2019).
 [11] R. Cazorla-Reyes, R. Romero-González, A. G. Frenich, M. A. Rodríguez Maresca, and J. L. Martínez Vidal, J Pharm Biomed Anal 89, 203-212, (2014).
[12] J. Han, Y. Zhuo, Y. Chai, R. Yuan, W. Zhang, and Q. Zhu, Anal Chim Acta 746, 70-76, (2012).
[13] F. Zhang, S. Gu, Y. Ding, L. Zhou, Z. Zhang, and L. Li, J Electroanal Chem 698, 25-30, (2013).
[14] J. Zhang, Y. Sun, H. Dong, X. Zhang, W. Wang, and Z. Chen, Sensors Actuators B Chem 233, 624-632, (2016)
 
[15] C. H. Gayathri, P. Mayuri, K. Sankaran, and A. S. Kumar, Biosens Bioelectron 82, 71-77, (2016).
[16] G. Nazari, H. Abolghasemi, and M. Esmaieli, J Taiwan Inst Chem Eng 58, 357-365, (2016).
[17] A. Rodayan, P. A. Segura, and V. Yargeau, Sci Total Environ 487, 763-770, (2014).
[18] A. Ziylan and N. H. Ince, J Hazard Mater 187, 24-36, (2011)
[19] V. Gabet-Giraud, C. Miège, J. M. Choubert, S. M. Ruel, and M. Coquery, Sci Total Environ 408, 4257-4269, (2010).
[20] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162-163, (1985).
[21] M. A. Lebedeva, T. W. Chamberlain, and A. N. Khlobystov, Chem Rev 115, 11301-11351, (2015).
[22] I. Ali, O. M. L. Alharbi, Z. A. Alothman, and A. Y. Badjah, Photochem Photobiol 94, 935-941, (2018).
[23] A. A. Basheer, Aircr Eng Aerosp Technol 92, 1027-1035, (2020)
[24] N. P. Shetti, A. Mishra, S. Basu, and T. M. Aminabhavi, Mater Today Chem 20, 100454 (2021).
[25] M. J. Molaei, Anal. Methods 12, 1266-1287, (2020).
[26] M. N. Norizan, M. H. Moklis, S. Z. Ngah Demon, N. A. Halim, A. Samsuri, I. S. Mohamad, V. F. Knight, and N. Abdullah, RSC Adv 10, 43704-43732, (2020).
[27] S. Wu, Q. He, C. Tan, Y. Wang, and H. Zhang, Small 9, 1160-1172, (2013).
[28] B. S. Sherigara, W. Kutner, and F. D’Souza, Electroanalysis 15, 753-772, (2003).
[29] W. Göpel, T. Jones, M. Kleitz, I. Lundström, T. Seiyama, "Sensors, chemical and biochemical sensors,"  John Wiley & Sons 2008.
[30] V. GaussView, Roy Dennington, , Todd Keith, S. I. John Millam, Shawnee Mission, KS, 2019.
[31] Nanotube Modeler, J. Crystal. Soft. 2014 software.
[32] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
[33] N. M. O’Boyle, A. L. Tenderholt, and K. M. Langner, J Comput Chem 29, 839-845. (2008).
[34] R. Ahmadi and M. R. Jalali Sarvestani, Russ J Phys Chem B 14, 198-208, (2020).
[35] M. R. J. Sarvestani, Z. Doroudi, Chemical Papers, 75, 4177-4188, (2021).
 [36] M. R. Jalali Sarvestani and Z. Doroudi, Russ J Phys Chem A 95, S338-S345, (2021).
 [41] A. Hassanpour, S. Ahmadi, P. D. K. Nezhad, A. Ebadi, M. R. J. Sarvestani, and S. Ebrahimiasl, Comput Theor Chem 1197, 113163 (2021).