اساس و کاربرد لیزرهای فرابنفش نانوسیم اکسید روی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اپتیک و لیزر، دانشکده فیزیک، دانشگاه سمنان، سمنان، ایران

2 اداره آموزش و پرورش نیشابور، خراسان رضوی، ایران

چکیده

امروزه، لیزرهای نانوسیم ZnO برای کاربردهای جدید در پردازش و محاسبات اطلاعات نوری و به عنوان منابع تحریک در تحقیقات پزشکی و زیستی کاربردهای گسترده ­ای دارند. بنابراین، در این مقاله لیزر ZnO با طول موج عملکردی در ناحیه فرابنفش نزدیک (350 تا 400 نانومتر) مورد بررسی قرار می ­گیرد. نانوسیم ­های ZnO با ساختار بلوری ورتزیت به عنوان ماده فعال لیزر در نظر گرفته شده و مشخصه­های نوری و اساس ایجاد تابش در خروجی لیزر ZnO مورد بررسی قرار می­گیرد. بررسی­ها نشان می­دهد که برای ایجاد لیزر فرابنفش ZnO باید تا حد امکان نقص ­های ساختاری ماده فعال را کاهش داد. همچنین، برهم کنش نور-ماده در نانوساختارهای ZnO به طور چشمگیری قوی‌تر از بلورهای ماکروسکوپی است و این ویژگی نوری تحت تأثیر شکاف انرژی نواری، اندازه، شکل، جهت‌گیری و بلوری بودن نانوسیم ­ها قرار دارد. تک نانوسیم ZnO می­تواند به دلیل اختلاف ضریب شکست با محیط اطراف به عنوان موجبر یا تشدیدگر به کار گرفته شود و مدهای تشدید شونده به ابعاد نانوسیم بستگی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Fundamental and applications of ultraviolet Zinc Oxide Nanowire Lasers

نویسندگان [English]

  • Elham Naranji 1
  • Maryam Aliannezhadi 1
  • Mohamadbagher Zaefi 2
1 Faculty of Physics, Semnan University, Semnan, Iran
2 Department of Education, Neyshabur, Iran
چکیده [English]

Today, ZnO nanowire lasers are widely used for new applications in optical information processing and computing, and also as excitation sources in medical and biological researches. Therefore, in the paper, the ZnO laser with a lasing wavelength in the near ultraviolet region (350 to 400 nm) is investigated. ZnO nanowires with the wurtzite crystal structure are considered as the active medium of the laser, and the optical characteristics and the basis of generated radiations at the output of the laser are analyzed. Studies show that the structural defects of the active medium of a ZnO ultraviolet laser should be reduced as much as possible to achieve lasing. Also, the light-matter interactions in ZnO nanostructures are significantly stronger than in macroscopic crystals, and this optical property is influenced by the energy bandgap, size, shape, orientation, and crystallinity of the ZnO nanowire. A single ZnO nanowire can be used as a waveguide or resonator due to the difference in its refractive index with the surrounding medium, and the resonant modes depend on the dimensions of the nanowire.

کلیدواژه‌ها [English]

  • Exciton
  • zinc oxide
  • polariton
  • ZnO nanowire laser
  • semiconductor
[1] A. Galdámez-Martinez, G. Santana, F. Güell, P.R. Martínez-Alanis, A. Dutt, Nanomaterials, 10, 857,(2020).
[2] J. Lv, X. Li, Physical Chemistry Chemical Physics, 20, 11882-11887,(2018).
[3] G. Chen, P.-S. Wang, Chinese Physics Letters, 35, 127701,(2018).
[4] A. Einstein, First published in, 121-128,(1916).
[5] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, science, 292, 1897-1899,(2001).
[6] H. Yan, J. Johnson, M. Law, R. He, K. Knutsen, J. McKinney, J. Pham, R. Saykally, P. Yang, ADVANCED MATERIALS, 15, 2052-2052,(2003).
[7] J.C. Johnson, K.P. Knutsen, H. Yan, M. Law, Y. Zhang, P. Yang, R.J. Saykally, Nano Letters, 4, 197-204,(2004).
[8] C. Klingshirn, J. Fallert, H. Zhou, H. Kalt, Applied Physics Letters, 91, 131115,(2007).
[9] C. Klingshirn, R. Hauschild, J. Fallert, H. Kalt, Physical Review B, 75, 115203,(2007).
[10] C. Zhang, F. Zhang, T. Xia, N. Kumar, J.-i. Hahm, J. Liu, Z.L. Wang, J. Xu, Optics express, 17, 7893-7900,(2009).
[11] T.P. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S.A. Maier, C. Ronning, R.F. Oulton, Nature Physics, 10, 870-876,(2014).
[12] H. Yu, T.P. Sidiropoulos, W. Liu, C. Ronning, P.K. Petrov, S.H. Oh, S.A. Maier, P. Jin, R.F. Oulton, Advanced Optical Materials, 5, 1600856,(2017).
[13] J. Bruncko, M. Michalka, J. Kovac, A. Vincze, Applied Physics A, 126, 1-7,(2020).
[14] S.A. Church, R. Al-Abri, P. Parkinson, D. Saxena, Progress in Quantum Electronics, 100408,(2022).
[15] Y. Yu, B. Liu, Z. Duan, L. Ma, Y. Zhong, M. Li, Applied Optics, 61, 8115-8122,(2022).
[16] H.-Y. Li, S. Ruhle, R. Khedoe, A. Koenderink, D. Vanmaekelbergh, Nano letters, 9, 3515-3520,(2009).
[17] D. Vanmaekelbergh, L.K. Van Vugt, Nanoscale, 3, 2783-2800,(2011).
[18] J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn, H. Kalt, Optics express, 16, 1125-1131,(2008).
[19] M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, M. Kaliteevski, Physical Review B, 65, 161205,(2002).
[20] M.A. Versteegh, T. Kuis, H. Stoof, J.I. Dijkhuis, Physical Review B, 84, 035207,(2011).
[21] J.C. Johnson, H.-J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang, R.J. Saykally, Nature materials, 1, 106-110,(2002).
[22] A. Maslov, C. Ning, Applied physics letters, 83, 1237-1239,(2003).
[23] A. Maslov, C. Ning, IEEE journal of quantum electronics, 40, 1389-1397,(2004).
[24] C.-Z. Ning, K. Ding, F. Fan, Z. Liu, S. Turkdogan, D. Shelhammer, L. Yin, P. Nicholson, H. Ning,  2014 IEEE Photonics Society Summer Topical Meeting Series, IEEE2014,. 23-24.
[25] C.-Z. Ning, IEEE Journal of Selected Topics in Quantum Electronics, 19, 1503604-1503604,(2013).
[26] H. Gao, A. Fu, S.C. Andrews, P. Yang, Proceedings of the National Academy of Sciences, 110, 865-869,(2013).
[27] S.W. Eaton, A. Fu, A.B. Wong, C. Ning, P. Yang,
[28] R.E. Algra, M.A. Verheijen, M.T. Borgström, L.-F. Feiner, G. Immink, W.J. van Enckevort, E. Vlieg, E.P. Bakkers, Nature, 456, 369-372,(2008).
[29] V. Bordo, Physical Review B, 81, 035420,(2010).
[30] K. Dulta, G. Koşarsoy Ağçeli, P. Chauhan, R. Jasrotia, P. Chauhan, Journal of Cluster Science, 33, 603-617,(2022).
[31] P. Rong, S. Ren, Q. Yu, Critical reviews in analytical chemistry, 49, 336-349,(2019).
[32] T. Pauporté, D. Lincot, B. Viana, F. Pellé, Applied Physics Letters, 89, 233112,(2006).
[33] J.H. Choy, E.S. Jang, J.H. Won, J.H. Chung, D.J. Jang, Y.W. Kim, Advanced Materials, 15, 1911-1914,(2003).
[34] Z. Qiu, K. Wong, M. Wu, W. Lin, H. Xu, Applied physics letters, 84, 2739-2741,(2004).
[35] W.I. Park, D.H. Kim, S.-W. Jung, G.-C. Yi, Applied Physics Letters, 80, 4232-4234,(2002).
[36] a.R. Wagner, s.W. Ellis, Applied physics letters, 4, 89-90,(1964).
[37] C.Y. Lee, T.Y. Tseng, S.Y. Li, P. Lin, Journal of Applied Science and Engineering, 6, 127-132,(2003).
[38] B. Zou, R. Liu, F. Wang, A. Pan, L. Cao, Z.L. Wang, The Journal of Physical Chemistry B, 110, 12865-12873,(2006).
[39] S. Ranwa, M. Kumar, J. Singh, M. Fanetti, M. Kumar, Journal of Applied Physics, 118, 034509,(2015).
[40] S. Ma, A.H. Kitai, Materials Research Express, 4, 065012,(2017).
[41] O. Lupan, G.A. Emelchenko, V.V. Ursaki, G. Chai, A. Redkin, A.N. Gruzintsev, I. Tiginyanu, L. Chow, L.K. Ono, B.R. Cuenya, Materials Research Bulletin, 45, 1026-1032,(2010).
[42] A.M. Morales, C.M. Lieber, Science, 279, 208-211,(1998).
[43] Y. Zhang, R.E. Russo, S.S. Mao, Applied Physics Letters, 87, 133115,(2005).
[44] D. Repp, A. Barreda, F. Vitale, I. Staude, U. Peschel, C. Ronning, T. Pertsch, arXiv preprint arXiv:2211.04376,(2022).
[45] X. Qin, M. Liu, D. Yang, X. Zhang, The Journal of Physical Chemistry B, 114, 3863-3868,(2010).
[46] C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier‐Flaig, D. Schneider, H. Kalt, physica status solidi (b), 247, 1424-1447,(2010).
[47] A. Toropov, O. Nekrutkina, T. Shubina, T. Gruber, C. Kirchner, A. Waag, K. Karlsson, P.-O. Holtz, B. Monemar, Physical Review B, 69, 165205,(2004).
[48] J. Hopfield, Physical Review, 112, 1555,(1958).
[49] J. Hopfield, D. Thomas, Journal of Physics and Chemistry of Solids, 12, 276-284,(1960).
[50] J. Hopfield, D. Thomas, Physical review letters, 15, 22,(1965).
[51] X. Zhang, P. Wang, X. Zhang, J. Xu, Y. Zhu, D. Yu, Nano Research, 2, 47-53,(2009).
[52] C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Physical Review Letters, 69, 3314,(1992).
[53] B. Gil, A.V. Kavokin, Applied Physics Letters, 81, 748-750,(2002).
[54] P.J. Pauzauskie, D. Talaga, K. Seo, P. Yang, F. Lagugné-Labarthet, Journal of the American Chemical Society, 127, 17146-17147,(2005).
[55] R. Guo, J. Nishimura, M. Matsumoto, M. Higashihata, D. Nakamura, J. Suehiro, T. Okada, Applied Physics B, 90, 539-542,(2008).
[56] N. Garces, L.B. Wang, Appl. Phys. Lett, 81, 622,(2002).
[57] S. Chen, Y. Liu, Adv. Mater.(Weinheim, Ger.), 17, 586,(2005).
[58] M. Zhou, H. Zhu, Y. Jiao, Y. Rao, S. Hark, Y. Liu, L. Peng, Q. Li, The Journal of Physical Chemistry C, 113, 8945-8947,(2009).
[59] C. Cheng, B. Liu, E.J. Sie, W. Zhou, J. Zhang, H. Gong, C.H.A. Huan, T.C. Sum, H. Sun, H.J. Fan, The Journal of Physical Chemistry C, 114, 3863-3868,(2010).
[60] B.K. Meyer, Alves, H, D. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, physica status solidi (b), 241, 231-260,(2004).
[61] R.-C. Wang, C.-P. Liu, J.-L. Huang, S.-J. Chen, Applied Physics Letters, 87, 053103,(2005).
[62] L. Huang, S. Wright, S. Yang, D. Shen, B. Gu, Y. Du, The Journal of Physical Chemistry B, 108, 19901-19903,(2004).
[63] H.J. Fan, R. Scholz, F.M. Kolb, M. Zacharias, Applied physics letters, 85, 4142-4144,(2004).
[64] X. Meng, D. Shen, J. Zhang, D. Zhao, Y. Lu, L. Dong, Z. Zhang, Y. Liu, X. Fan, Solid State Communications, 135, 179-182,(2005).
[65] H.T. Ng, B. Chen, J. Li, J. Han, Appl. Phys. Lett, 82, 2023,(2003).
[66] X. Liu, X. Wu, H. Cao, R. Chang, Journal of applied physics, 95, 3141-3147,(2004).
[67] F. Wen, W. Li, J.-H. Moon, J.H. Kim, Solid State Communications, 135, 34-37,(2005).
[68] Q. Yang, K. Tang, J. Zuo, Y. Qian, Applied Physics A, 79, 1847-1851,(2004).
[69] S. Choopun, N. Hongsith, S. Tanunchai, T. Chairuangsri, C. Krua-In, S. Singkarat, T. Vilaithong, P. Mangkorntong, N. Mangkorntong, Journal of Crystal growth, 282, 365-369,(2005).
[70] W. Yu, X. Li, X. Gao, Crystal growth & design, 5, 151-155,(2005).
[71] W. Göpel, U. Lampe, Physical Review B, 22, 6447,(1980).
[72] Y. Chen, J. Jiang, Z. He, Y. Su, D. Cai, L. Chen, Materials Letters, 59, 3280-3283,(2005).
[73] R. Wang, J.H. Xin, X.M. Tao, W.A. Daoud, Chemical Physics Letters, 398, 250-255,(2004).
[74] W. Shi, B. Cheng, L. Zhang, E. Samulski, Journal of applied physics, 98, 083502,(2005).
[75] D. Reynolds, D.C. Look, B. Jogai, Journal of Applied Physics, 89, 6189-6191,(2001).
[76] M. Ahmad, C. Pan, W. Yan, J. Zhu, Materials science and engineering: B, 174, 55-58,(2010).
[77] K. Vanheusden, Appl. Phys. Lett, 76, 1280-1282,(1995).
[78] J. Jie, G. Wang, X. Han, Q. Yu, Y. Liao, G. Li, J. Hou, Chemical Physics Letters, 387, 466-470,(2004).
[79] N.F. Mott, L. Friedman, Philosophical Magazine, 30, 389-402,(1974).
[80] M. Ahmad, J. Zhao, J. Iqbal, W. Miao, L. Xie, R. Mo, J. Zhu, Journal of Physics D: Applied Physics, 42, 165406,(2009).
[81] Z. Zhang, K. Yao, Y. Liu, C. Jin, X. Liang, Q. Chen, L.M. Peng, Advanced functional materials, 17, 2478-2489,(2007).
[82] Y.-W. Cheng, C.-H. Chen, S.-W. Yang, Y.-C. Li, B.-L. Peng, C.-C. Chang, R.-C. Wang, C.-P. Liu, Scientific reports, 8, 1-10,(2018).
[83] Y. Guan, G. Wang, S. Zhao, L. Wang, Y. Ding, L. Yang, Applied Sciences, 12, 1004,(2022).