مطالعه خواص الکتروشیمیایی زیست حسگر چاپی گلوکز مبتنی بر جوهر گرافن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده شیمی، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 پژوهشکده فناوری های نو، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

 
مطالعه‌ی الکترونیک چاپی یکی از عناصر مهم در تحولات تولید صنعتی است. جهت نیل به این مهم، در پژوهش حاضر، الف) یک الکترود بر پایه‌ی جوهر رسانای گرافن با استفاده از فرآیند چاپ صفحه‌ای چاپ شد، ب) شرایط پخت در هوا برای جوهر گرافن اعمال شد، و ج) تثبیت آنزیم (با استفاده از گرافن سه بعدی) و عملکرد الکتروشیمیایی حسگر زیستی چاپ شده بررسی شد. این روش تولید حسگر زیستی مقیاس‌پذیر خصوصیات قابل توجهی مانند حساسیت بالا  𝜇A.mM-1.cm-2769/9 دارد و محدوده خطی آنmM  0/2 تا 16 برای نظارت بر قند خون انسان در طول روز در زمان پاسخ کوتاه مناسب است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of electrochemical properties of printed glucose biosensor based on graphene ink

نویسندگان [English]

  • naghmeh gholamalizadeh 1
  • saeedeh Mazinani 2
  • Majid Abdouss 1
  • Ali Mohammad Bazargan 2
1 Department of chemistry, Amirkabir university of technology, Tehran, Iran
2 New Technologies Research Center (NTRC), Amirkabir university of technology, Tehran, Iran
چکیده [English]

The study of printed electronics is one of the important elements in the development of industrial productions. To achieve this, in the present study, a) an electrode based on conductive graphene ink was printed using a screen printing process, b) an air-curing condition was applied to graphene ink, and c) enzyme stabilization (using 3D graphene) and the electrochemical performance of the printed biosensor were investigated. This method of producing scalable biosensors has significant characteristics such as high sensitivity769.9 𝜇A.mM-1.cm-2 , and its linear range of 0.2 to 16 mM is suitable for human blood sugar monitoring in a short response time during a day. The results signified high selectivity against interfering species such as ascorbic acid and lactose, and high repeatability and reproducibility with low relative standard deviation values of 1.04% and 1.5%, respectively, for the device. No considerable reduction in the printed electrochemical biosensor (PEB) performance was observed after bending cycles of up to 100, indicating the high flexibility of the biosensor. The PEB presented a great potential to be used as a personalized health monitoring device in complex biological fluids.

کلیدواژه‌ها [English]

  • Printed Electronics
  • Graphene Conductive Ink
  • Glucose Biosensor
  • Flexible Biosensor
 
 
 
 
 
 
 
 
[1].          Kundu, M., et al., Comparative Studies of Screen-Printed Electrode Based Electrochemical Biosensor with the Optical Biosensor for Formaldehyde Detection in Corn. 14(4), 726-738, (2021).
[2].          Istrate, O.-M., L. Rotariu, and C.J.C. Bala, Amperometric L-Lactate Biosensor Based upon a Gold Nanoparticles/Reduced Graphene Oxide/Polyallylamine Hydrochloride Modified Screen-Printed Graphite Electrode. 9(4), 74, (2021).
[3].          Lyamine, C.M., et al., Disposable non-enzymatic electrochemical glucose sensors based upon screen-printed graphite macroelectrodes modified via a facile methodology with Ni, Cu, and Ni/Cu hydroxides are shown to accurately determine glucose in real human serum blood samples. 2021.
[4].          Justino, C.I., et al., Graphene based sensors and biosensors. 91, 53-66(2017).
[5].          Liu, Y., et al., Biocompatible graphene oxide-based glucose biosensors. 26(9),  6158-6160, (2010).
[6].          Popov, A., et al., Reduced Graphene Oxide and Polyaniline Nanofibers Nanocomposite for the Development of an Amperometric Glucose Biosensor. 21(3),948, (2021).
[7].          Xu, M., et al., Reduced Graphene Oxide-Coated Silica Nanospheres as Flexible Enzymatic Biosensors for Detection of Glucose in Sweat. ACS Applied Nano Materials, 4(11),12442-12452, (2021).
[8].          Hu, T., et al., Glucose sensing on screen-printed electrochemical electrodes based on porous graphene aerogel @prussian blue. Biomedical Microdevices, 24(1), 14, (2022).
[9].          Tran, T.S., et al., Graphene inks for printed flexible electronics: graphene dispersions, ink formulations, printing techniques and applications. 261,41-61, (2018).
[10].        Pan, S., et al., Stable cellulose/graphene inks mediated by an inorganic base for the fabrication of conductive fibers. 9(17), 5779-5788,(2021).
[11].        Tkachev, S., et al., Environmentally friendly graphene inks for touch screen sensors. 31(33), . 2103287, (2021).
[12].        Ping, J., et al., Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosensors and Bioelectronics, 34(1), 70-76, (2012).
[13].        Panraksa, Y., et al., Paper-based amperometric sensor for determination of acetylcholinesterase using screen-printed graphene electrode. Talanta, 178, 1017-1023, (2018).
[14].        Camargo, J.R., et al., Novel eco-friendly water-based conductive ink for the preparation of disposable screen-printed electrodes for sensing and biosensing applications. Electrochimica Acta, 409, 139968, (2022).
[15].        Gholamalizadeh, N., et al., Efficient and Direct Exfoliation of High-Quality Graphene Layers in Water from Different Graphite Sources and Its Electrical Characterization. 16(07), 2150079, (2021).
[16].Pu, Z., et al., A flexible electrochemical glucose sensor with composite nanostructured surface of the working electrode. Sensors and Actuators B: Chemical, 230, 801-809, (2016).
[17].        Mansouri, N., et al., Immobilization of glucose oxidase on 3D graphene thin film: Novel glucose bioanalytical sensing platform. International Journal of Hydrogen Energy, 42(2),1337-1343, (2017).
[18].        Sharifi, M., et al., Strategies for enzyme immobilization on nanomatrix supports and intracellular delivery of enzymes. Journal of biomolecular Structure & Dynamics, 38, 2746-2762, (2019).
[19].        Kong, F.-Y., et al., A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: Toward whole blood glucose determination. Biosensors and Bioelectronics, 56,77-82, (2014).
[20].        Esmaeili, C., et al., Synergy Effect of Nanocrystalline Cellulose for the Biosensing Detection of Glucose. 15(10),24681-24697, (2015).
[21].        Chandra Sekar, N., et al., A paper-based amperometric glucose biosensor developed with Prussian Blue-modified screen-printed electrodes. Sensors and Actuators B: Chemical, 204: 414-420, (2014).
[22].        Shen, X., et al., Amperometric Glucose Biosensor Based on AuPd Modified Reduced Graphene Oxide/Polyimide Film with Glucose Oxidase. Journal of The Electrochemical Society, 164(6),B285-B291, (2017).
[23].        Acevedo-Restrepo, I., et al., Electrochemical glucose quantification as a strategy for ethanolic fermentation monitoring. 7(1): ,14, (2019).
[24].        Hossain, M.F. and J.Y. Park, Fabrication of sensitive enzymatic biosensor based on multi-layered reduced graphene oxide added PtAu nanoparticles-modified hybrid electrode. PloS one, 12(3) e0173553-e0173553, (2017).
[25].        Lee, S.H., et al., A Simple and Facile Glucose Biosensor Based on Prussian Blue Modified Graphite String. Journal of Sensors, 12, 1859292, (2016).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Investigation of electrochemical properties of printed glucose biosensor based on graphene ink
S.Mozayenani1, N.Gholamalizadeh2*, M. Abdos1, A.M. Bazargan1,3
1.Department of chemistry, Amirkabir university of technology, Tehran, Iran
2.New Technologies Research Center (NTRC), Amirkabir university of technology, Tehran, Iran
3.Kara Pazhuhesh Company Amirkabir, Tehran
 
Abstract: The study of printed electronics is one of the important elements in the development of industrial productions. To achieve this, in the present study, a) an electrode based on conductive graphene ink was printed using a screen printing process, b) an air-curing condition was applied to graphene ink, and c) enzyme stabilization (using 3D graphene) and the electrochemical performance of the printed biosensor were investigated. This method of producing scalable biosensors has significant characteristics such as high sensitivity769.9 𝜇A.mM-1.cm-2 , and its linear range of 0.2 to 16 mM is suitable for human blood sugar monitoring in a short response time during a day. The results signified high selectivity against interfering species such as ascorbic acid and lactose, and high repeatability and reproducibility with low relative standard deviation values of 1.04% and 1.5%, respectively, for the device. No considerable reduction in the printed electrochemical biosensor (PEB) performance was observed after bending cycles of up to 100, indicating the high flexibility of the biosensor. The PEB presented a great potential to be used as a personalized health monitoring device in complex biological fluids.
 
Keywords: Printed Electronics, Graphene Conductive Ink, Glucose Biosensor, Flexible Biosensor.