نقاط کوانتومی به عنوان نانوحسگرها جهت تشخیص مواد منفجره

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه صنعتی مالک اشتر ـ پژوهشکده علوم و فناوری دفاعی شمال غرب ـ ارومیه

چکیده

‎با افزایش روزافزون خطرات و حملات تروریستی و به کارگیری بمب‌های مدرن در حملات تروریستی، شناسایی سریع مواد منفجره در هر مکانی به یک ‏نیاز اساسی تبدیل شده است. در سالهای اخیر از نقاط کوانتومی به دلیل دارا بودن مزایایی از قبیل حساسیت بالا، پاسخ دهی سریع و قیمت ارزان جهت ‏ساختن نانوحسگرهای مواد انفجاری برای شناسایی مواد منفجره استفاده شده است. در این مقاله تلاش شده است با جمع‌آوری مقالاتی که به تازگی در مورد ‏استفاده از نقاط کوانتومی برای تهیه و ساخت حسگرهای حساس به مواد منفجره در مجلات معتبر به چاپ رسیده است، توضیحاتی در مورد اهمیت، مکانیسم ‏عمل و مزیت‌های این روشها نسبت به روشهای متداول قدیمی ارائه شود. ‏

کلیدواژه‌ها


1. Yinon J., “Detection of explosives by electronic noses”, Anal. Chem., 2003, 75, 99A–105A. 2. Hakansson K., Coorey R.V., Zubarev R.A., Talrose V.L., Hakansson P., “Low-mass ions observed in plasma desorption mass spectrometry of high explosives” J. Mass Spectrom. 2000, 35, 337–346. 3. Anferov V.P., Mozjoukhine G.V., Fisher R., “Pulsed spectrometer for nuclear quadrupole resonance for remote detection of nitrogen in explosives”, Rev. Sci. Instrum. 2000, 71, 1656–1659. 4. Luggar R.D., Farquharson M.J., Horrocks J.A., Lacey R.J., “Multivariate analysis of statistically poor EDXRD spectra for the detection of concealed explosives”, J. X-ray Spectrom. 1998, 27, 87–94. 5. Rouhi A.M., “Landmines: Horrors begging for solutions”, Chem. Eng. News, 1997, 75, 14–22. 6. Sylvia J.M., Janni J.A., Klein J.D., Spencer K.M., “Surface-enhanced Raman detection of 2,4-Dinitrotoluene impurity vapor as a marker to locate landmines”, Anal. Chem. 2000, 72, 5834–5840. 7. Riskin M., Vered R., Willner I., “Imprinted Au-nanoparticle composites for the ultrasensitive surface plasmon resonance detection of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)” , Adv. Mater. 2010, 22, 1387–1391. 8. Riskin M., Vered R., Lioubashevski O., Willner I., “Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked Au nanoparticles composite”, J. Am. Chem. Soc. 2009, 131, 7368–7378. 9. Moore D.S., “Instrumentation for trace detection of high explosives”, Rev. Sci. Instrum. 2004, 75, 2499–2512. 10. Caygill J., Davis F., Higson S.P., “Current trends in explosive detection techniques”, Talanta, 2012, 88, 14–29. 11. Kuang H., Zhao Y., Ma W., Xu L., Wang L., Xu C., “Recent developments in analytical applications of quantum dots”, Trends Anal. Chem, 2011, 30(10), 1620-1631. 12. Murray C.B., Norris D. J.,Bawendi M.G., “Synthesis and characterization of nearly monodisperse CdE(E=S, Se, Te) semiconductor nanocrystallites”,J. Am. Chem. Soc, 1993, 115(19), 8706-8715. 13. Rajh T., Micic O. I., Nozik J., “Synthesis an characterization of surface-modifeid colloidal CdTe quantom dots”, j. Phys. Chem. B, 1993, 97(46), 11999-12003. 14. Correa-Duarte M.A., Giersig M., Kotov N. A., Liz-Marzan L. M., “Control of packing order of self-assembledmonolayers of magnetit nanoparticles with and without SiO2 coating by microwave irradiation”, Langmuir, 1998, 14(22), 6430-6435. 15. Qian H. F., Qiu X., L. Li, Ren J.C., “Microwave assisted aqueous synthesis : a rapid approch to prepare highly luminescent ZnSe(S) alloyed quantom dots”, J. Phys. Chem. B, 2006, 110(18), 9034-9040. 16. Yu Y., Xu L., Chen J., Gao H., Wang S., Fang j., Xu S., “Hydrothermal synthesis of GSH-TGA co-capped CdTe quantom dots and their application in labeling colorectal cancer cells.” Colloids Surf. B, 2012, 95, 247-253. 17. Lang J.,Li X., Yang J., Yang L., Zhang Y., Yang Y., Han Q., Wei M., Gao M., Liu X., Wng R., “Rapid synthesis and luminescence of the Eu3+, Er3+ codoped ZnO quantum-dot chain via chemical precipitation method”, Appl. Surf. Sci., 2011, 257, 9574-9577. 18. Ren H., Yan X., “Ultrasonic assisted synthesis of adenosine triphosphate capped manganese-doped ZnS quantom dots for selective room temperature phosphorescence detection of argenine and methylated argenine in urine based on supermolecular Mg2+ adenosine triphosphate-argenine ternary system.” Tlanta, 2012, 97, 16-22. 19. Liu M., Zhao H., Chen S, Wang H., Quan X., “Photochemical synthesis of highly fluorescent CdTe quantom dots for “on-of-on” detection of Cu(II) ions”, Inorg. Chim. Acta, 2012, 392, 236-240. 20. Li S., Zhao H., Tian D., “Aqueous synthesis of highly monodispersed thiol-capped CdSe quantom dots based on the elecrochemical method”, Mater. Sci. Semicond. Process. 2013, 16, 149-153. 21. Firmansyah D.A., Kim S., Lee K., kim R., Lee D., “Microstructure controlled aerosol-gel synthesis of ZnO quantom dots dispersed in SiO2 nanospheres”, Langmuir, 2012, 28, 2890-2896. 22. Zakharko Y., Rioux D., Pataskovsky S., Lysenko V., Marty O., Bluet J., Meunier M., “ Direct synthesis of luminescent SiC quantom dots in water by laser ablation”, Phys. Status Solidi RRL, 2011, 5, 292-294. 23. Li Z., Peng L., Fang Y., Chen Z., Pan D., Wu M., “synthesis of colloidal SnSe quantom dots by electron beam irradiation”, Radiat. Phys. Chem. , 2011, 80, 1333, 1336. 24. Chang S. Q., Kang B., Dai Y.D., Zhang H.X., Chen D., “One-step fabrication of biocompatible chitosan-coated ZnS and ZnS:Mn2+ quantom dots via a ?-radiation route”, Nanoscale Res. Lett. 2011, 6, 591-597. 25. Hines D.A., Kamat P.V., “Recent advances in quantum dot surface chemistry”, Appl. Mater. Interfaces, 2014, 6, 3041?3057 26. Xu S., Lu H., Li J., Song X., Wang A., Chen L., Han S., “Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene”, Appl. Mater. Interfaces, 2013, 5(16), 8146-54. 27. Nieto S.,SantanaA.,Hernandes S., Lareau R., Chamberlain R.T., Castro M.. “Quantom dots for detection of trace amount of nonvolatile explosives: the effect of TNT in the fluorescence of CdSe quantom dots”, Proceeding of SPIE, 2004, 5403, 256-260. 28. Goldman E. R., Medintz I.L., Whitley J. L., Hayhurst A., Clapp A.R., Uyeda H.T, Deschamps J. R., Lassman M. E., Mattoussi H., “A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor”, J. Am. Chem. Soc. 2005, 127, 6744-6751. 29. Hua Shi G., Shang Z. B., Wanga Y., Wei J., Zhang T., “Fluorescence quenching of CdSe quantum dots by nitroaromatic explosives and their relative compounds”, Spectrochimica Acta , 2008, 70, 247–252. 30. Tu R., Liu B., Wang Z., Gao D., Wang F., Fang Q., Zhang Z., “Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive”, Anal. Chem. 2008, 80, 3458-3465. 31. Zhang K, Zhou H., Mei Q., Wang S., Guan G., Liu R., Zhang J., Zhang Z., “Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid”, J. Am. Chem. Soc. 2011, 133, 8424–8427. 32. Stringer R. C., Gangopadhyay S., Grant S. A., “Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer”, Anal. Chem. 2010, 82, 4015–4019. 33. Fan L., Hua Y., Wang X., Zhang L., Li F., Han D., Li Z., Zhang Q., Wang Z., Niu L., “Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT”, Talanta, 2012, 101 192–197. 34. Carri?n C., Simonet B. M., Valc?rcel M., “Determination of TNT explosive based on its selectively interaction with creatinine-capped CdSe/ZnS quantum dots”, Anal. Chim. Acta, 2013, 792, 93– 100.