مروری بر بررسی نقاط کوانتومی:روش های سنتز و کاربردهای آن

نویسنده

دکترای تخصصی شیمی معدنی دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

چکیده

نیمه هادی های نقاط کوانتومی، که اندازه ذرات آن ها در محدوده نانومتر هستند، دارای خواص بسیار غیر معمولی هستند. نقاط کوانتومی دارای شکاف باند هستند که بر تعدادی از عوامل، شرح داده شده در مقاله بستگی دارد. روابط ساختار- پردازش و خواص عملکرد برای بررسی ترکیبات نیمه هادی های نقاط کوانتومی مورد مطالعه قرار گرفته اند. روش های مختلف برای سنتز این نقاط کوانتومی و همچنین خواص شان مورد بحث قرار گرفته است. حالت کوانتومی و محدودیت در برانگیختگی شان ممکن است باعث تغییر مکان جذب نوری و نشرانرژی شان شود . که چنین اثراتی برای تنظیم تحریک لومینسانس خود به خود توسط فوتون درخشندگی نورییا میدان الکتریکی الکترولومینسانس مهم هستند. در این مقاله، برنامه های کاربردی چندبعدی نقاط کوانتومی ، از جمله دردستگاه الکترولومینسانس ، سلول های خورشیدی و تصویربرداری بیولوژیکی بررسی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

A review of quantum dots: synthesis methods and its applications

نویسنده [English]

  • azam zamani

کلیدواژه‌ها [English]

  • quantum dots
  • semiconducting nanomaterials
  • electroluminescence
  • photoluminescence
  • solar cells
  • biological imaging
[1] A. Henglein, Small-particle research-physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 1861–1873, (1989).
[2] T. Trindade, P. O'Brien, N.L. Pickett, Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chem. Mater13, 3843–3858,( 2001).
[3] S. Kuchibhatla, A.S. Karakoti, D. Bera, S. Seal, One dimensional nanostructured materials. Prog. Mater. Sci. 52, 699–913, (2007).
[4] D. Bera, S.C.Kuiry, S. Seal, Synthesis of nanostructured materials using template-assisted electrodeposition. JOM, 56,49–53, (2004).
[5] A.P.  Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239,(1996).
[6] D.Bera,  L.Qian, P.H. Holloway, Phosphor Quantum Dots; John WIley & Sons, Ltd: West Sussex, UK, (2008).
[7] P.Walter,  E.Welcomme,  P.Hallegot,  N.J. Zaluzec, C. Deeb, J. Castaing, P.Veyssiere,  R. Breniaux,  J.L. Leveque, G. Tsoucaris, Early use of PbS nanotechnology for an ancient hair dyeing formula. Nano Lett. 6, 2215–2219,(2006).
[8] H.P. Rocksby, Color of selenium ruby glasses. J. Soc. Glass Technol, 16, 171(1932).
 [9] A.I.Ekimov,  A.A. Onushchenko, Quantum size effect in 3-dimensional microscopic semiconductor crystals. JETP Lett. 34, 345–349,(1981).
[10] R. Rossetti, J.L.Ellison, J.M.Gibson, L.E. Brus, Size effects in the excited electronic states of small colloidal CdS crystallites. J. Chem. Phys. 80, 4464–4469,(1984).
[11] L Spanhel,. M. Haase, H. Weller, A. Henglein, Photochemistry of colloidal semiconductors .20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem. Soc. 109, 5649–5655,( 1987).
[12] A.R. Kortan, R. Hull, R.L Opila,. M.G. Bawendi, M.L Steigerwald,  P.J. Carroll, L.E. Brus, Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc. 112,1327–1332,(1990).
[13] C.B. Murray, D.J. Norris,  M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715,(1993).
[14] F. Grieser, D.N. Furlong,  D. Scoberg,  I. Ichinose, N. Kimizuka, T. Kunitake, Size-quantized semiconductor cadmium chalcogenide particles in Langmuir-Blodgett-films. J. Chem. Soc. Faraday Trans. 88,2207–2214,(1992).
[15] M. Sundaram, S.A. Chalmers, P.F. Hopkins, A.C. Gossard, New quantum sructures. Science, 254, 1326–1335,(1991).
[16] R. Cingolani, K. Ploog, Frequency and density dependent radiative recombination processes in III-V semiconductor quantum-wells and superlattices. Adv. Phys. 40,535–623,(1991).
[17] A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science. 271, 933–937,(1996).
[18] V.I. Klimov,; A.A.Mikhailovsky,; S.Xu,; A.Malko,; J.A.Hollingsworth, C.A.Leatherdale, H.J.Eisler, M.G. Bawendi, Optical gain and stimulated emission in nanocrystal quantum dots. Science, 290,314–317,(2000).
[19] M.V.Artemyev, U. Woggon,; R.Wannemacher, H.Jaschinski, W. Langbein, Light trapped in a photonic dot: Microspheres act as a cavity for quantum dot emission. Nano Lett. 309–314,(2001).
[20] D. Graham-Rowe, From dots to devices. Nat. Photonics, 3,307–309,( 2009).
[21] S. Coe-Sullivan, Quantum dot developments. Nat. Photonics, 3,315–316,(2009)
[22] Y.Wang, N. Herron, Nanometer-sized semiconductor clusters–materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95, 525–532,( 1991).
[23] J. Bang, H. Yang, P.H. Holloway, Enhanced and stable green emission of ZnO nanoparticles by surface segregation of Mg. Nanotechnology, 17, 973–978,(2006).
[24] E. Kucur, W.Bucking, R. Giernoth, T. Nann, Determination of defect states in semiconductor nanocrystals by cyclic voltammetry. J. Phys. Chem. B, 109,20355–20360, (2005).
[25]  Z.H. Yu, L. Guo,  H. Du,  T. Krauss,; J. Silcox, Shell distribution on colloidal CdSe/ZnS quantum dots. Nano Lett. 5, 565–570,( 2005).
[26] H. Yang, P.H. Holloway, Efficient and Photostable ZnS-passivated CdS:Mn luminescent nanocrystals. Adv. Func. Mater., 14,152–156,(2004).
[27] S.J. Rosenthal, J. McBride, S.J. Pennycook, L.C. Feldman, Synthesis, surface studies, composition and structural characterization of CdSe, core/shell and biologically active nanocrystals. Surf. Sci. Rep. 62, 111–157,(2007).
[28] J.R. McBride, T.C. Kippeny, S.J. Pennycook, S.J. Rosenthal, Aberration-corrected Z-contrast scanning transmission electron microscopy of CdSe nanocrystals. Nano Lett. 4,1279–1283,  (2004).
[29] J. McBride, J.Treadway, L.C. Feldman, S.J.Pennycook, S.J. Rosenthal, Structural basis for near unity quantum yield core/shell nanostructures. Nano Lett. 6,1496–1501,( 2006).
[30] J.E.B. Katari, V.L. Colvin, A.P. Alivisatos, X-Ray photoelectron-spectroscopy of CdSenanocrystals with applications to studies of the nanocrystal surface. J. Phys. Chem. 98, 4109–4117 , (1994).
[31] D. Bera, L. Qian, S. Sabui, S. Santra, P.H. Holloway, Photoluminescence of ZnO quantum dots produced by a sol-gel process. Opt. Mater. 30, 1233–1239 ,( 2008).
[32] M.A.Hines, P. Guyot-Sionnest, Synthesis and characterization of strongly luminescing ZnScapped CdSe nanocrystals. J.Phys. Chem. 100,468–471,(1996).
[33] B.O. Dabbousi, J. RodriguezViejo, F.V.Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B, 101,9463–9475,(1997).
[34] V.I. Klimov, Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: Implications for lasing and solar energy conversion. J. Phys. Chem. B, 110, 16827–16845,(2006).
[35] A.Scherer, H.G. Craighead, E.D. Beebe, Gallium-arsenide and aluminum gallium-arsenide reactive ion etching in boron-trichloride argon mixtures. J. Vac. Sci. Technol. B, 5,  1599–1605,(1987).
[36] K.Tsutsui, E.L.Hu,  C.D.W. Wilkinson, Reactive ion etched II-VI quantum dots–dependence of etched profile on pattern geometry. Jpn. J. Appl. Phys. Part 1. 32, 6233–6236, (1993).
[37] E.Chason, S.T.Picraux,  J.M. Poate, J.O. Borland, M.I. Current, T.D. delaRubia, D.J. Eaglesham, O.W. Holland,; M.E. Law, C.W. Magee, J.W.Mayer, J. Melngailis, A.F. Tasch, Ion beams in silicon processing and characterization. J. Appl. Phys. 81, 6513–6561,( 1997).
[38] C. Burda, X.B. Chen, R. Narayanan, El-Sayed, M.A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102, (2005).
[39] D.Leonard, M.Krishnamurthy, C.M.Reaves, S.P. Denbaars, P.M. Petroff, Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs-surfaces. Appl. Phys. Lett. 63,3203–3205, (1993).
[40] S.H. Xin,  P.D. Wang, A. Yin,; Kim, M. C. Dobrowolska, J.L. Merz, J.K. Furdyna, Formation of self-assembling CdSe quantum dots on ZnSe by molecular beam epitaxy. Appl. Phys. Lett., 69,3884–3886,(1996).
[41] K. Leonardi, H. Selke, H. Heinke, K. Ohkawa, D. Hommel, F. Gindele, U. Woggon, Formation of self-assembling II-VI semiconductor nanostructures during migration enhanced epitaxy. J. Cryst. Growth, 184,259–263,(1998).
[42] E. Kurtz, J.Shen, M . Schmidt, M. Grun, S.K. Hong, D. Litvinov,  D. Gerthsen, T.  Oka, T.Yao,  C. Klingshirn, Formation and properties of self-organized II-VI quantum islands. Thin Solid Films, 367,68–74,(2000).
[43] M.T. Swihart, Vapor-phase synthesis of nanoparticles. Curr. Opin. Colloid Interface Sci. 8, 127–133, (2003).
 [44] M. Volmer, A. Weber, Keimbildung in ubersettigten gebilden. Z. Phys. Chem., 119,277,(1926).
 [45] I.N. Stranski, V.L. Krastanow, Sitzungberichte der akademie der wissenschaften in wien. Akad. Wiss. Lit. Mainz Math.-Natur. KI. IIb, 146, 797,(1939)
 [46] D.J. Eaglesham, M. Cerullo, Dislocation-free stranski-krastanow growth of Ge on Si(100). Phys. Rev. Lett. 64,1943–1946 , (1990).
 [47] Y.G. Kim, Y.S. Joh, J.H.Song, K.S. Baek, S.K. Chang, E.D. Sim, Temperature-dependent photoluminescence of ZnSe/ZnS quantum dots fabricated under the Stranski-Krastanov mode. Appl. Phys. Lett. 83, 2656–2658,(2003).
[48] S. Tsukamoto, G.R. Bell, Y. Arakawa, Heteroepitaxial growth of InAs on GaAS(001) by in situ STM located inside MBE growth chamber. Microelectron. J. 37, 1498–1504,( 2006).
[49] Y.H. Jiao,  J. Wu,; B. Xu, P. Jin, L.J.Hu, L.Y. Liang, Z.G. Wang, MBE InAs quantum dots grown on metamorphic InGaAs for long wavelength emitting. Physica E, 35, 194–198,(2006).
[50] S. Nakamura, K. Kitamura, H. Umeya,; A. Jia, M. Kobayashi, A.Yoshikawa,  M. Shimotomai, S.Nakamura, K.Takahashi, Bright electroluminescence from CdS quantum dot LED structures. Electron. Lett. 34, 2435–2436 , (1998).
 [51] C. Lobo,  R. Leon, InGaAs island shapes and adatom migration behavior on (100), (110), (111), and (311) GaAs surfaces. J. Appl. Phys. 83,4168–4172,( 1998).
 [52] J.Lee, V.C.Sundar,  J.R. Heine, M.G.  Bawendi, K.F. Jensen, Full color emission from II-VI semiconductor quantum dot-polymer composites. Adv. Mater. 12, 1102 ,( 2000).
 [53] H.S. Chen, C.K.  Hsu,  H.Y. Hong, InGaN-CdSe-ZnSe quantum dots white LEDs. IEEE Photonics Technol. Lett. 81, 193–195, (2006).
[54] M. Gratzel, From space to earth: The story of solar electricity. Nature (London), 403,  363,(2000)
[55] W. Shockley, H.J.  Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32,510–519, (1961).
[56] King, R.R.; Law, D.C.; Edmondson, K.M.; Fetzer, C.M.; Kinsey, G.S.; Yoon, H.; Sherif, R.A.; Karam, N.H. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett., 90, 183516,(2007).
[57] H. Hoppe, N.S. Sariciftci, Organic solar cells: An overview. J. Mater. Res., 19, 1924–1945,(2004).
[58] Guldi, D.M.; Rahman, G.M.A.; Sgobba, V.; Kotov, N.A.; Bonifazi, D.; Prato, M. CNT-CdTe versatile donor-acceptor nanohybrids. J. Am. Chem. Soc., 128, 2315–2323,(2006).
[59] L.L.  Han, D.H. Qin, X.  Jiang, Y.S.  Liu, L. Wang, J.W.  Chen, Y.  Cao, Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells. Nanotechnology, 17,4736–4742,(2006).
[60] C.C.  Oey, A.B. Djurisic, H.  Wang, K.K. Y. Man, W.K.  Chan, M.H.  Xie, Leung, Y.H.  A. Pandey, J.M.  Nunzi, P.C. Chui, Polymer-TiO2 solar cells: TiO2\ interconnected network for improved cell performance. Nanotechnology, 17, 706–713,(2006).
[61] D.C.  Olson, J.  Piris, R.T. Collins, S.E.  Shaheen, D.S. Ginley, Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. Thin Solid Films, 496,26–29, (2006).
[62] P.  Michler, A. Imamoglu, M.D.  Mason, P.J. Carson, G.F.  Strouse, S.K. Buratto, Quantum correlation among photons from a single quantum dot at room temperature. Nature (London), 406, 968–970,(2000).
[63] D.H.  Cui, J.  Xu, T.  Zhu, G.  Paradee, S. Ashok, M. Gerhold, Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells. Appl. Phys. Lett. 88, 183111, (2006).
[64] B. O'Regan, D.T. Schwartz, S.M.  Zakeeruddin, M. Gratzel, Electrodeposited nanocomposite np heterojunctions for solid-state dye-sensitized photovoltaics. Adv.Mater. 12, 1263–1267, (2000).
[65] S.  Bereznev, I. Konovalov, A. Opik,  J. Kois, Hybrid CuInS2/polypyrrole and CuInS2 /poly(3,4-ethylenedioxythiophene) photovoltaic structures. Synth. Met,152,81–84,(2005).
[66] A.J. Nozik, Exciton multiplication and relaxation dynamics in quantum dots: Applications to ultrahigh-efficiency solar photon conversion. Inorg. Chem,44,6893–6899,( 2005).
[67] J.J.H.  Pijpers,  R. Ulbricht, K.J. Tielrooij, A. Osherov, Y. Golan,  C. Delerue, G. Allan, M. Bonn, Assessment of carrier-multiplication efficiency in bulk PbSe and PbS. Nat. Physics,5, 811–814,( 2009).
[68] M.C. Beard, R.J. Ellingson, Multiple exciton generation in semiconductor nanocrystals: Toward efficient solar energy conversion. Laser Photonics Rev. 2, 377–399,(2008).
[69] G. Allan, C.  Delerue, Influence of electronic structure and multiexciton spectral density on multiple-exciton generation in semiconductor nanocrystals: Tight-binding calculations, Phys.
Rev. B,77, 125340,(2008).
[70] M.C. Beard, K.P. Knutsen, P.R.Yu, J.M. Luther, Q. Song, W.K. Metzger, R.J. Ellingson, A.J. Nozik, Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 7, 2506–2512(2007).
[71] A.J. Nozik, Quantum dot solar cells. Physica E,14,115–120,( 2002).
[72] V.I. Klimov,  S.A.  Ivanov, J. Nanda, M. Achermann, I. Bezel, J.A. McGuire, A. Piryatinski, Single-exciton optical gain in semiconductor nanocrystals. Nature (London). 447, 441–446,(2007).
[73] C.J. Wang, B.L. Wehrenberg, C.Y. Woo, Guyot-Sionnest, P. Light emission and amplification in charged CdSe quantum dots. J. Phys. Chem. B, 108, 9027–9031(2004).
[74] J. Roither, S. Pichler, M.V.  Kovalenko, W. Heiss, P. Feychuk, O. Panchuk, J.  Allam, B.N. Murdin, Two- and one-dimensional light propagations and gain in layer-by-layer-deposited colloidal nanocrystal waveguides. Appl. Phys. Lett,89,111-120.(2006).
[75] B. Liu, H.P.  Li, C.H. Chew, W.X.  Que, Y.L.  Lam, C.H. Kam, L.M. Gan, G.Q. Xu, PbSpolymer nanocomposite with third-order nonlinear optical response in femtosecond regime.Mater.Lett. 51,461–469 (2001).
[76] K.R. Choudhury, Y. Sahoo, P.N. Prasad, Hybrid quantum-dot-polymer nanocomposites for infrared photorefractivity at an optical communication wavelength. Adv. Mater. 17, 2877–2881,(2005).
[77] D.P. Williams, A.D. Andreev, E.P. O'Reilly, Dependence of exciton energy on dot size in GaN/AlN quantum dots. Phys. Rev. B, 73,241-301,(2006).
[78] G.Q. Pan, M.E. Kordesch, P.G. Van Patten, New pyrolysis route to GaN quantum dots. Chem. Mater,18 ,3915–3917.(2006).
[79] S. Barik, H.H. Tan, C. Jagadish, N. Vukmirovic, P. Harrison, Selective wavelength tuning of self-assembled InAs quantum dots grown on InP. Appl. Phys. Letter,88, ( 2006).
[80] P.J. Cassidy, G.K. Radda, Molecular imaging perspectives. J. R. Soc. Interface,2,133,–144, (2005)
[81] P. Zrazhevskiy, X. Gao, Quantum dots for cancer molecular imaging. Minerva Biotecnologica, 21, 37–52,(2009).
[82] E.M.C. Hillman, Optical brain imaging in vivo: Techniques and applications from animal to man. J. Biomed. Optics, 120, 51-402,(2007).
[83] G.D.  Luker, K.E.  Luker, Optical imaging: Current applications and future directions. J. Nucl. Med. 49, 1–4,(2008).
[84] W.W.  Wu, A.D. Li, Optically switchable nanoparticles for biological imaging. Nanomedicine 2,523–531,(2007).
[85] R.  Weissleder, A clearer vision for in vivo imaging. Nat. Biotechnol,19, 316–317,(2001).
[86] K.E.  Sapsford, T. Pons, Medintz, I.L., H.  Mattoussi, Biosensing with luminescent semiconductor quantum dots. Sensors, 925–953,(2006).
[87] A. Sukhanova, M. Devy, Venteo, L.H. Kaplan, M. Artemyev, V. Oleinikov, D. Klinov, M. Pluot, J.H.M. Cohen, I. Nabiev, Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal. Biochem. 324,60–67,(2004).
[88] M. Dahan, S. Levi, C. Luccardini, P. Rostaing, B. Riveau, A. Triller, Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science, 302, 442–445,(2003).