مروری بر مواد دو بعدی مکسین و کاربرد آن‌ها در افزایش ویژگی فوتوکاتالیستی نیم رساناها

نوع مقاله : مروری

نویسندگان

دانشکده فیزیک، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

ترکیبات دوبعدی کاربیدی، نیتریدی و کربونیتریدی فلزهای واسطه (مکسین‌ها) که برای نخستین بار در سال 2011 سنتز شدند، به­ دلیل داشتن تنوع شیمیایی بالا، پیچیدگی‌های ساختاری و رسانایی الکتریکی شبیه فلزات کاربردهای زیادی در باطری‌های یونی، حسگرها، ذخیره کننده‌های انرژی و ... پیدا کرده‌اند. از طرفی خانواده مکسین به دلیل دارا بودن مساحت سطحی بالا، گروه‌های عاملی و همچنین، تسریع در جداسازی حامل‌های بار، یکی از ارزشمندترین انتخاب­ها برای بهبود و افزایش عملکرد فوتوکاتالیستی نیم ­رسانا‌ها به شمار می‌روند. در این مقاله سعی شده است مروری بر ساختار، روش‌های ساخت مکسین و همچنین، تاثیر آن در خاصیت فوتوکاتالیستی نیم­ رسانا‌ها در فرایند تخریب رنگ‌دانه‌ها، شکافت فوتوکاتالیستی آب و فرایند کاهشی CO2 طبق پژوهش‌های انجام شده، انجام شود.

کلیدواژه‌ها


عنوان مقاله [English]

A review on two-dimensional MXene materials and their application for increasing the photocatalytic properties of semiconductors

نویسندگان [English]

  • Rezvaneh Amrollahi
  • Pooneh Nayebi
Department of physics, Iran university of science and technology, Tehran, Iran
چکیده [English]

A review on two-dimensional MXene materials and their application for increasing the photocatalytic properties of semiconductors
Rezvaneh Amrollahi*, Pooneh Nayebi
Department of physics, Iran university of science and technology, Tehran, Iran

Abstract:

The two-dimensional transition metal carbides, nitrides and carbonitrides (MXenes) ,that were first synthezied in 2011, have found many application in ion batteries, sensors, energy storage devices, and etc due to their high chemical diversity, structural complexities and electrical conductivity similar to metals. In addition, the MXene family is one of the most valuable candidates for improving and boosting the photocatalytic performance of semiconductors beacuse of its special surface, functional groups and also accelerating the separation of charge carriers. In this review, we tried to introduce the structure, prepration method of MXene and its effect on the photocatalytic properties of semiconductors for photodegradation of dyes, water splitting reaction, and CO2 conversion.

Keywords: MXenes, photocatalysis, dyes, water splitting, CO2 conversion

کلیدواژه‌ها [English]

  • MXenes
  • photocatalysis
  • dyes
  • water splitting
  • CO2 conversion
[1]  N. Barka, M. Abdennouri, et al., Journal of the Taiwan Institute of Chemical Engineers, 42, 320-326, (2011).
[2]M. Rethinasabapathy, et al., Chemosphere, 286, 131679, (2022).
[3] A. Meng, et al.,  Advanced Materials,. 31, 1807660, (2019).
[4] Q. Xu, et al., Materials Today, 21, 1042-1063, (2018)
[5] Y. Fu, et al., Chinese Journal of Catalysis,. 38, 2160-2170, (2017).
[6] L.-f. Hong, et al., Materials Today Energy, 100521, (2020).
[7] M.A. Shannon, et al., a collection of reviews from nature Journals, 20,337-346.
[8] C. Prasad, et al., Journal of Industrial and Engineering Chemistry, 85, 1-33, (2020).
[9] E. Baeissa, Front. Nanosci. Nanotechnol, 2, 1-5, (2016).
[10] K. Nakata, and A. Fujishima, Journal of photochemistry and photobiology C: Photochemistry Reviews, 13, 169-189, (2012).
[11] W. Gao, et al., Applied Catalysis B: Environmental, 176, 83-90, (2015).
[12] L. Cheng, et al., Energy & Environmental Science, 11, 1362-1391, (2018).
[13] C.N. Hitam, and A. Jalil, Journal of environmental management, 258, 110050, (2020).
[14] A. Huizhong, et al., Rare Metals, 27, 243-250, (2008).
[15] J. Wen, et al., Applied surface science, 391, 72-123, (2017).
[16] F. Le Formal, et al., Journal of the American Chemical Society, 136, 2564-2574., (2014).
[17] P. Nayebi, and M. Babamoradi, Optik, 167497, (2021).
[18] M.K. Mohammed, Optik, 21, 164867, (2020).
[19] A. Abd-Elrahim, and D.-M. Chun, Ceramics International, 47, 12812-12825, (2021).
[20] C. Cu, et al., Applied Surface Science, 505, 144595, (2020).
[21] P. Tian, et al., International Journal of Hydrogen Energy, 44, 788-800, (2019).
[22] X. Liu, and C. Chen, Materials Letters, 261, 127127, (2020).
[23] F. Ranjbar, et al., Journal of Hazardous Materials, 416, 126196, (2021).
[24] R.M. Ronchi, J.T. Arantes, and S.F. Santos, Ceramics International, 45, 18167-18188, (2019).
[25] C. Prasad, H. Tang, and I. Bahadur, Journal of Molecular Liquids, 281, 634-654, (2019).
[26] W.K. Jo, and T.S. Natarajan, Chemical Engineering Journal, 281, 549-565, (2015).
[27] Y.-P. Yuan, et al., Applied Catalysis B: Environmental, 168, 572-576, (2015).
[28] W. Zhou, et al., Materials Letters, 101-132, (2020).
[29] C. M. Aldoa, et al., Tin Oxide Materials, 11, 1606-1611, (2018).
[30] M. Naguib, et al., Advanced materials, 23, 4248-4253, (2011).
[31] M. Mozafari, and M. Soroush, Materials Advances, (2021).
[32] M. Barsoum, et al., Journal of alloys and compounds, 340, 173-179, (2002).
[33]T. El-Raghy, M. Barsoum, and M. Sika, Materials Science and Engineering: A, 298, 174-178, (2001).
[34] M. Naguib, et al., Advanced materials, 26, 992-1005, (2014).
[35] M. Pogorielov, et al., Nanomaterials, 11, 3412, (2021).
[36] H. Chang, et al., Chemical Engineering Journal, 421, 129944, (2021).
[37] B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, Nature Reviews Materials, 2, 1-17, (2017).
[38] J. Luo, et al., InfoMat, 2, 1057-1076, (2020).
[39]M. Ghidiu, et al., Nature, 516, 78-81, (2014).
[40] J. Nan, et al., Small, 17, 19020, (2021).
[41] P., Urbankowski, et al., Nanoscale, 8, 11385-11391, (2016).
[42] T. Li, et al., Angewandte Chemie International Edition, 57, 6115-6119, (2018).
[43] J. Xuan, et al., Angewandte Chemie, 128, 14789-14794, (2016).
[44] S. Yang, et al., Angewandte Chemie, 130,. 15717-15721, (2018).
[45] C. Xu, et al., Nature materials, 14, 1135-1141, (2015).
[46] M. Alhabeb, et al., Chemistry of Materials, 29, 7633-7644, (2017).
[47] L. Tie, et al., Journal of colloid and interface science, 545, 63-70, (2019).
[48] Y. Zhuang, Y. Liu, and X. Meng, Applied Surface Science, 496, 143647, (2019).
[49] O. Mashtalir, et al., Journal of Materials Chemistry A, 2, 14334-14338, (2014).
[50] C.J. Zhang, et al., Chemistry of Materials, 29, 4848-4856, (2017).
[51] M.R. Lukatskaya, et al., Science, 341, 1502-1505, (2013).
[52] X. Xie, and N. Zhang, Advanced Functional Materials, 30, 2002528, (2020).
[53] Y. Gao, et al., Materials Letters, 150, 62-64, (2015).
[54] P. Liu, et al., ChemCatChem, (2021).
[55] H. Wang, et al., Applied Catalysis B: Environmental, 233, 213-225, (2018).
[56] H. Fang, et al., Journal of Solid State Chemistry, 280, 120981, (2019).
[57] S. Chen, et al., Environmental Research, 204, 111949, (2022).
[58] A. Fujishima, Nature, 238, 5358, (1972).
[59] P. Kuang, et al., Journal of Materials Science & Technology, 18-44, (2020).
[60] H. Wang, et al., ChemSusChem, 9, 1490-1497, (2016).
[61] T. Su, et al., ChemSusChem, 11, 688-699, (2018).
[62] D. Ruan, M. Fujitsuka, and T. Majima, Applied Catalysis B: Environmental, 264, 118541, (2020).
[63] X. Du, et al., Applied Materials Today, 20, 100719, (2020).
[64] M. Ou, et al., Chemical Engineering Journal, 424, 130170, (2021).
[65] H.M. Ertugrul, et al., Ecological Indicators, 67, 543-555, (2016).
[66] J. Shen, et al., Ceramics International, 45, 24146-24153, (2019).
[67] Z. Zeng, et al., Advanced Functional Materials, 29, 1806500, (2019).
[68] J. Hu, J. Ding, and Q. Zhong, Journal of Colloid and Interface Science, 582, 647-657, (2021).
[69] J. Low, et al., Journal of Catalysis, 361, 255-266, (2018).
[70] C. Wang, et al., Applied Surface Science, 519, 146175, (2020).
[71] H. Fang, et al., Materials Research Bulletin, 121, 110618, (2020).
[72] H. Zhang, et al., Ceramics International, 44, 19958-19962, (2018).
[73] Q. Huang, et al., Journal of Photochemistry and Photobiology A: Chemistry, 375, 201-208, (2019).
[74] L. Cheng, et al., Applied Catalysis B: Environmental, 267, 118379, (2020).
[75] M. Shao, et al., Journal of Materials Chemistry A, 5, 16748-16756, (2017).
[76] W. Yang, et al., Chemical Engineering Journal, 429, 132381, (2022).
[77] X. Li, et al., Applied Surface Science, 546, 149111, (2021).
[78] S. Cao, et al., Advanced Functional Materials, 28, 18, (2018).
[79] A. Pan, et al., The journal of physical chemistry letters, 10, 6590-6597, (2019).