مروری بر تولید نانوذرات با استفاده از روش های زیستی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی شیمی، دانشگاه تربیت مدرس، تهران

چکیده

با توجه به استفاده ی روزافزون نانوذرات در زمینه‌های مختلف، استفاده از روش‌های ایمن و ارزان، جهت تولید نانوذرات زیست سازگار، می‌تواند اقدامی مناسب جهت کاهش عوارض جانبی آن ها باشد. روش‌های معمول تولید نانوذرات، روش‌های فیزیکی و شیمیایی هستند که یا باعث تولید مقدار اندک و هزینه بر نانوذرات می‌شوند و یا به دلیل آلودگی ناشی از مواد شیمیایی پیش ساز و تولید محصولات جانبی خطرناک، اغلب سمی بوده و مقدار زیادی انرژی مصرف می‌کنند؛ بنابراین نیاز فزاینده ای جهت ارائه روش‌های نوین تولید نانوذرات وجود دارد که نقش روش‌های زیستی را پررنگ‌تر می‌سازد. تولید زیستی نانوذرات و کاربرد آن ها در زمینه های مختلف به سرعت در حال گسترش است. در این تحقیق تحولات اخیر تولید زیستی نانوذرات، سازوکارهای مختلف تشکیل آن ها با استفاده از میکروارگانیسم ها و گیاهان، شرایط کنترل شکل، اندازه و پایداری نانوذرات به طور خلاصه ارائه شده است همچنین محدودیت‌های فعلی و چشم‌اندازهای آینده آن مورد بحث قرار گرفته است.
 

کلیدواژه‌ها


[1] Sundrarajan, M., and S. Gowri, Green synthesis of Titanium Dioxide Nanoparticles by Nyctanthes Arbor-tristis leaves extract, Chalcogenide Lett 8.8: 447-451, (2011).
[2] K. B. Narayanan, N. Sakthivel, Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents, Advances in Colloid and Interface Science, 169: p. 59-79 (2011).
[3] A.V. Kirthi,  A.A. Rahuman, G. Rajakumar, S. Marimuthu, T. Santhoshkumar, C. Jayaseelan, G. Elango, A. Abduz Zahir, C. Kamaraj, A. Bagavan, Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis, Materials Letters, 66: P. 2745-2747 (2011).
[4] Prathna T.C., Lazar Mthew, N. Chandrasekaran, Ashok M. Raichur and Amitava Mukherjee, Biomimetic synthesis of nanoparticles: Science, technology and applicability, Biomimetics-Learning from nature, P. 1-20 (2010).
[5] Ahmad, A., Satyajyoti, S., Khan, M.I., Rajiv, K., Ramani, R., Srinivas, V., Murali, S., b. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete Nanotechnology 14, 824–828 (2003).
[6] Murali, S., Ahmad, A., Khan, M.I., Rajiv, K., Biosynthesis of metal nanoparticles using fungi and actinomycete, Curr. Sci. 85, 162–170 (2003).
[7] Mandal, Deendayal, Mark E. Bolander, Debabrata Mukhopadhyay, Gobinda Sarkar, and Priyabrata Mukherjee, The use of microorganisms for the formation of metal nanoparticles and their application, Applied microbiology and biotechnology 69, no. 5 (2006): 485-492.
[8] A. Ahmad, S. Senapati, M. I. Khan, R. Kumar, and M. Sastry, Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, thermomonospora sp, Langmuir, 19: p. 3550–3553 (2003).
[9] P. Mukherjee, A. Ahmad, D. Mandal, Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed, Angewandte Chemie—International Edition, 40: p. 3585–3588 (2001).
[10] A. Ahmad, S. Senapati, M. I. Khan, Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species, Nanotechnology, 14: p. 824–828 (2003). 
[11] M. F. Lengke, M. E. Fleet, and G. Southam, Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-Thiosulfate and gold(III)-chloride complexes, Langmuir, 22: p. 2780–2787 (2006).
[12] M. F. Lengke, B. Ravel, M. E. Fleet, G. Wanger, R. A.Gordon, and G. Southam, Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex, Environmental Science & Technology, 40: p. 6304–6309 (2006).
[13] T. Klaus, R. Joerger, E. Olsson, and C. -G. Granqvist, Silverbased crystalline nanoparticles, microbially fabricated ,Proceedings of the National Academy of Sciences of the United States of America, 96: p. 13611–13614 (1999).
[14] Xiangqian Li, Huizhong Xu, Zhe-Sheng Chen, and Guofang Chen, Biosynthesis of Nanoparticles by Microorganisms and Their Applications, Journal of Nanomaterials, Review Article, (2011).
[15]  G. Southam and T. J. Beveridge, The in vitro formation of placer goldbybacteria, Geochimica et Cosmochimica Acta, 58: p.4527-4530 (1994).
[16] Iravani, S., International Scholarly Research Notices, Bacteria in Nanoparticle Synthesis: Current Status and Future Prospects, Review Article, (2014).
[17] Y. Konishi, T. Tsukiyama, K.Ohno,N. Saitoh, T.Nomura, and S.Nagamine, Intracellular recovery of gold by microbial reduction of AuCl4- ions using the anaerobic bacterium Shewanella algae, Hydrometallurgy, vol. 81, no. 1, pp. 24–29, (2006).
[18] A. Arakaki, H. Nakazawa, M. Nemoto, T. Mori, and T. Matsunaga, Formation of magnetite by bacteria and its application, Journal of the Royal Society Interface, 5: p. 977–999 (2008).
[19]  S. Senapati, A. Ahmad, M. I. Khan, M. Sastry, and R. Kumar, Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles, Small, 1: p. 517–520 (2005).
[20] M.A. Ansari, H.M. Khan, A.A. Khan, S.S. Cameotra, Q. Saquib, J. Musarrat, Interaction of Al2O3 nanoparticles with Escherichia coli and their cell envelope biomolecules, Journal of Applied Microbiology, 116: P. 772-783 (2014).
[21] C. T. Dameron, R. N. Reese, R. K. Mehra, Biosynthesis of cadmium sulphide quantum semiconductor crystallites, Nature, vol. 338, no. 6216, pp. 596–597, (1989).
[22] P. Williams, E. Keshavarz-Moore, and P. Dunnill, Production of cadmium sulphide microcrystallites in batch cultivation by Schizosaccharomyces pombe, Journal of Biotechnology, vol. 48, no. 3, pp. 259–267, (1996).
[23] M. Labrenz, G. K. Druschel, T. Thomsen-Ebert, Formation of sphalerite (ZnS) deposits in natural biofilms of sulfatereducing bacteria, Science, vol. 290, no. 5497, pp. 1744–1747 (2000).
[24] H. Bai and Z. Zhang, Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides, Materials Letters, vol. 63, no. 9-10, pp. 764–766, (2009).
[25] M.R. Hosseini, M. Schaffie, M. Pazouki, E. Darezereshki, M. Ranjbar, Biologically synthesized copper sulfide nanoparticles: Production and characterization, Materials Science in Semiconductor Processing, 15: P. 222-225 (2012).
[26] G. Ulloa, B. Collao,  M. Araneda, B. Escobar, S. Álvarez, D. Bravo, Use of acidophilic bacteria of the genus Acidithiobacillus tobiosynthesize CdS fluorescent nanoparticles (quantum dots) with high tolerance to acidic pH, Enzyme and Microbial Technology, 95: p. 217-224(2016).
[27] Peralta-Videa, Jose R., Yuxiong Huang, Jason G. Parsons, Lijuan Zhao, Laura Lopez-Moreno, Jose A. Hernandez-Viezcas, and Jorge L. Gardea-Torresdey. Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis?, Nanotechnology for Environmental Engineering 1, no. 1: p 4 (2016).
[28] Shah, Monaliben, Green synthesis of metallic nanoparticles via biological entities Materials 7278-7308 (2015).
[29] Iravani, Siavash, Green synthesis of metal nanoparticles using plants, Green Chemistry 2638-2650 (2011).
[30] Al-Ruqeishi, Majid S., Tariq Mohiuddin, and Liayla K. Al-Saadi. Green synthesis of iron oxide nanorods from deciduous Omani mango tree leaves for heavy oil viscosity treatment, Arabian Journal of Chemistry (2016).
[31] G.Valli, S.Geetha, A Green Method for the Synthesis of Titanium Dioxide Nanoparticles using Cassia Auriculata Leaves Extract, ISSN 2349-8870 (2015).
[32] H.J. Bai, Z.M. Zhang, Y. Guo, G.E. Yang, Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris, Colloids and Surfaces B: Biointerfaces, 70: p. 142-146 (2009).
[33] S. He, Z. Guo, Y. Zhang, S. Zhang, J.Wang, and N. Gu, Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate, Materials Letters, 61: p. 3984–3987 (2007).
[34] L. Xiang, W. Bin, J. Huali, Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system, Journal of Gene Medicine, vol. 9, no. 8, pp. 679–690, (2007).
[35] R. Hergt, R. Hiergeist, M. Zeisberger, Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools, Journal of Magnetism and Magnetic Materials, vol. 293, no. 1, pp. 80–86, (2005).
[36] R. Hergt and S. Dutz, Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy, Journal of Magnetism and Magnetic Materials, vol. 311, no. 1, pp. 187–192, (2007).