نانو کریستال کیتین: روش های تولید، ویژگی ها و کاربردهای آن

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و صنایع غذایی دانشکده کشاورزی دانشگاه ارومیه

چکیده

کیتین بعد از سلولز فراوانترین پلی ساکارید نیمه بلورین موجود در طبیعت است. با حذف قسمت آمورف کیتین تحت شرایط خاص، بلورهایی در مقیاس نانو حاصل م یشوند که اصطلاحاً به آنها نانو کریستال کیتین یا نانوویسکرکیتین گفته م یشود. بدلیل دارا بودن مزایای زیاد نانوکریستالهای کیتین و سایر نانو ذرات آلی مانند نانو کریستال سلولز و نشاسته در مقایسه با نانوذرات معدنی، از جمله دسترسی آسان، غیر سمی بودن، زیست تخریب پذیری و دانسیته پایین، در طی سالهای اخیر، استفاده از آنها در زمینه تولید نانوکامپوزی تهای پلیمری، مورد توجه محققین بسیاری قرار گرفته است. در این مقاله مروری، به بررسی ساختار شیمیایی کیتین و رو شهای تهیه نانوکریستال کیتین پرداخته شده و در ادامه به نتایج مطالعاتی که اخیرا در زمین هی استفاده از این نانوذرات در تولید نانوکامپوزی تهای پلیمری صورت گرفته و همچنین تأثیرات مهم افزودن نانوکریستال کیتین بر روی خواص کاربردی پلیمرهای مختلف اشاره شده است.

کلیدواژه‌ها


1. Sorrentino, A., Gorrasi, G. & Vittoria, V., (2007). Potential perspectives of bio nanocomposites for food packaging applications. Trends in Food Science & Technology. 18, 84-95. 2. Gindl, W. & Keckes, J., (2005). All-cellulose nanocomposite. Polymer. 46, 10221–10225. 3. Bordes, P., Pollet, E.& Averous, L., (2009).Nanobiocomposites: Biodegradable polyester/nanoclay systems. Progress in Polymer Science. 34, 125–155. 4. Chang, p., Jian, R., Yu, J.& Ma, X., (2010).Starchbased composites reinforced with novel chitin nanoparticles. Carbohydrate Polymers. 80, 420-425. 5. Favier, V., Chanzy, H.& Cavaille, J.Y.,(1995). Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules. 28, 6365–6367. 6. Habibi, Y., Lucia, L.A.&Rojas, O., (2010).Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical Reviews. 110, 3479–3500. 7. Chen, L., Zhu, M.F., Song, L.Y., Yu, H., Zhang, Y., Chen, Y.M.& Adler, H., (2004). Crystallization behavior and thermal properties of blends of poly(3-hydroxybutyrateco-3-valerate) and poly(1,2propandiolcarbonate). Macromolecular Symposia. 210, 241–250 . 8. Angles, M.N.&Dufresne, A., (2001).Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules. 34, 2921– 2931. 9. Ravi Kumar, M.V., (2001). A Review of chitin and chitosan applications. Reactive and Functional Polymers. 46, 1-27. 10. Ravikumar, M.N.V.B., (1999). Chitin and chitosan fibres: a review. Materials Science and Engineering. 22, 905–915 . 11. Rinaudo, M., (2006a). Chitin and chitosan: Properties and applications. Progress in Polymer Science. 31, 603–632. 12. Ifuku, S. &Saimoto, H., (2012). Chitin nanofibers: preparations, modifications, and applications. Nanoscale. 4, 3308–3318. 13. Revol, J.-F.&Marchessault, R.H. (1993). In vitro chiral nematic ordering of chitin crystallites. International Journal of Biological Macromolecules. 15, 329-335. 14. Lu, Y., Weng, L.&Zhang,L. (2004). Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules.5,1046-1051. 15. Muzzarelli, A and Muzzarelli, C, “Chitin nanofibrils” In: Chitin and Chitosan: Research Opportunities and Challenges, Dutta, P.K., New Age International, New Delhi, India, 2005. 16. Fan, Y., Saito, T.&Isogai, A., (2008a). Chitin nanocrystals prepared by TEMPO mediated oxidation of α-chitin. Biomacromolecules. 9, 192–198. 17. Peesan,M., Rujiravanit,R.& Supaphol,P., (2003). Characterization of Beta- Chitin/Poly(vinyl alcohol) Blend Films. Polymer Testing. 22, 381-387. 18. Diaz-Rojas, E. I., Arguelles-Monal, W. M., Higuera- Ciapara, I., Hernandez, J., Lizardi-Mendoza, J.& Goycoolea, F. M.,( 2006). Determination of chitin and protein contents during the isolation of chitin from shrimp waste.Macromolecular Bioscience. 6, 340−347. 19. Rashidova S., Milusheva R.Y., Voropaeva N.L., Pulatova, S.R., Nikonovich G.& Ruban, I.N., (2004). Isolation of Chitin from a Variety of Raw Materials, Modification of the Material, and Interaction of its Derivatives with Metal Ions. Chromatographia. 59,783-786. 20. Pillai, C.K.S., Paul, W.&Sharma, C.P.,(2009).Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science. 34, 641–678. 21. Li, J., Revol, J.F., Marchessault, R.H.,(1997). Effect of degree of deacetylation of chitin on the properties of chitin crystallites. Applied Polymer Science. 65, 373–380. 22. Montanari, S., Rountani, M., Heux, L.&Vignon, M.R.,(2005).Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPOmediated oxidation. Macromolecules. 38, 1665– 1671. 23. Fan, Y.M., Saito, T.&Isogai, A.,(2010). Individual chitin nano-whiskers prepared from partially deacetylated a-chitin by fibril surface cationization. Carbohydrate Polymers. 79, 1046–1051. 24. Zhao, H. P., Feng,X.-Q. & Gao,H. (2007). Ultrasonic technique for extracting nanofibers from nature materials. Applied Physics Letters. 90,073112. 25. Min, B.-M. ,Lee,S.W. ,Lim,J.N., You, Y., Lee,T.S. Kang,P.H. &Park,W.H., (2004). Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer. 45,7137- 7142. 26. Paillet, M.& Dufresne, A.,(2001). Chitin whiskers reinforced thermoplastic nanocomposites. Macromolecules. 34, 6527–6530. 27. Morin, A.& Dufresne, A.,(2002). Nanocomposites of chitin whiskers from Riftia tubes and poly(caprolactone). Macromolecules. 35, 2190– 2199. 28. Nair, K.G.&Dufresne, A., (2003). Crab shell chitin whisker reinforced natural rubber nanocomposites. Biomacromolecules. 4, 657–665. 29. Lu, Y.S., Weng, L.H.&Zhang, L.N.,(2004). Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules. 5, 1046–1051. 30. Junkasem, J., Rujiravanit, R.& Supaphol, P.,(2006). Fabrication of a-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite nanofibres by electrospinning. Nanotechnology. 17, 4519–4528. 31. Sriupayo, J., Supaphol, P., Blackwell, J.& Rujiravanit, R.,(2005). Preparation and characterization of a-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Polymers. 62, 130–136. 32. Watthanaphanit, A., Supaphol, P., Tamura, H., Tokura, S.&Rujiravanit, R.,(2008). Fabrication,structure and properties of chitin whisker-reinforced alginatenanocomposite fibers. Applied Polymer Science. 110, 890–899. 33. Chang, P.R., Jian, R.J., Yu, J.G.&Ma, X.F.,(2010). Chitin whiskers: an overview. Carbohydrate Polymers. 80, 420–425. 34. Hariraksapitak, P.& Supaphol, P.,(2010). Preparation and properties of a-chitin-whisker reinforced hyaluronangelatin nanocomposite scaffolds. Applied Polymer Science. 117, 3406- 3418. 35. Huang, J., Zou, J.W., Chang, P.R., Yu, J.H.& Dufresne, A.,(2011). New waterborne polyurethanebased nanocomposites reinforced with low loading levels of chitin whisker. Express PolymerLetters. 5, 362– 373. 36. Wu, X., Torres, F.G., Vilaseca, F.&Peijs, T.,(2007). Influence of the processing conditions on the mechanical properties of chitin whisker reinforced poly(caprolactone) nanocomposites. Biobased Materials and Bioenergy. 1, 341–350. 37. 37- Feng, L., Zhou, Z., Dufresne, L., Huang, J., Wei, M.&An, L.J.,(2009). Structure and Properties of New Thermoforming Bionanocomposites Based on Chitin Whisker-Graft Polycaprolactone. Applied Polymer Science. 112, 2830–2837. 38. Yuan, H.H., Nishiyama, Y., Wada, M.&Kuga, S.,(2006). Surface acylation of whiskers by drying aqueous emulsion. Biomacromolecules. 7, 696–700. 39. Dubief, D., Samain, E.&Dufresne, A.,(1999). Polysaccharide microcrystals reinforced amorphous poly(b-hydroxyoctanoate) nanocomposite materials. Macromolecules. 32, 5765–5771. 40. Paul, D.R.& Robeson, L.M.,(2008). Polymer nanotechnology: nanocomposites. Polymer. 49, 3187– 3204. 41. Le Corre, D., Bras, J.&Dufresne, A.,(2010). Biomacromolecules. 11,1139−1153. 42. Yu, J., Yang, J., Liu, B.& Ma, X.,(2009).Preparation and characterization of glycerol plasticizedpea starch/ZnO-carboxymethylcellulose sodium nanocomposites. Bioresource Technology. 100,2832–2841. 43. Zeng, M., Gao, H. N., Wu, Y. Q., Fan, L. R.& Li, A. P.,(2010). Macromolecular Science. 47, 867−876.