مطالعه‌ی ویژگی ساختاری، الکترونی، نوری و فتوکاتالیستی نانوساختارهای دو بعدی مکسین، به منظور بکارگیری در فرایند شکافت آب با روش نظریه‌ی تابعی چگالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشکده علوم پایه، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

2 گروه شیمی، دانشکده علوم پایه، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

چکیده

در این مقاله خواص ساختاری، الکترونی، اپتیکی و فتوکاتالیستی مکسین های دو بعدی از جمله Hf2CS2، Hf2CO2 و Hf2NO2 با استفاده از محاسبات نظریه تابعی چگالی (DFT) مورد مطالعه قرار گرفته است. این محاسبات با استفاده از تابعی های GGA-PBE و HSE06 انجام شده است. سلول واحد مربوط به هر سه ساختار ذکر شده و همچنین موقعیت اتمی آن ها به طور کامل بهینه سازی شده است. نتایج نشان می دهد که ثابت شبکه برای این نانوساختارها به ترتیب 3.3592، 3.4026 و 3.2378 آنگستروم می باشد. با استفاده از محاسبات تابعی GGA-PBE، فقط نانوساختار Hf2CO2 نیمه رسانا با گاف نواری 0.92 الکترون ولت است و دو نانوساختار دیگر فلز هستند. بنابراین ما محاسبات را با یک تابعی هیبریدی HSE06 نیز انجام دادیم. از اینرو نانوساختار Hf2CS2 از حالت فلزی به حالت نیمه رسانا تغییر پیدا کرد. گاف های نواری محاسبه شده برای نانوساختارهای Hf2CO2 و Hf2CS2 با استفاده از تابعی هیبریدی HSE06 به ترتیب 1.75 و 0.22 الکترون ولت می باشند. نتایج بدست آمده در این مطالعه با سایر مطالعات پیشین دارای تطابق خوبی می باشد. در این مطالعه، اختلاف گاف نواری محاسبه شده توسط این تابعی ها برای نانوساختارهای Hf2CO2 و Hf2CS2 به ترتیب 0.83 و 0.22 الکترون ولت می باشد. بخش های حقیقی و موهومی تابع دی الکتریک نیز با هدف پی بردن به ویژگی های اپتیکی این نانوساختارها مورد مطالعه قرار گرفته است. از میان نانوساختارهای مورد مطالعه، نانوساختار Hf2CO2 دارای جذب نوری بسیار بالایی می باشد. بنابراین با توجه به نتایج بدست آمده می توان گفت که تنها نانوساختار Hf2CO2 تمامی خواص لازم را برای انتخاب آن به عنوان فتوکاتالیست در فرایند شکافت آب را دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the Structural, Electronic, Optical and Photocatalytic Properties of Two-Dimensional MXene Nanostructures in order to Using in Water Splitting Process by Density Functional Theory Method

نویسندگان [English]

  • Sima Rastegar 1
  • Alireza Rastkar Ebrahimzadeh 1
  • Jaber Jahanbin Sardroodi 2
1 Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
2 Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
چکیده [English]

In this study, the structural, electronic, optical, and photocatalytic properties of two dimensional (2D) Hf2CO2, Hf2CS2, and Hf2NO2 MXenes nanostructures were investigated by density functional theory (DFT) calculations. These computations were used with GGA-PBE and HSE06 functionals. The unit cell of these three structures and their atomic positions are fully optimized. The results show that the lattice constants for these nanostructures are 3.3592, 3.4026 and 3.2378 Aͦ, respectively. Using calculations GGA-PBE functional, only nanostructure Hf2CO2 is semiconductor with a band gap 0.92 eV and the two nanostructures Hf2CS2 and Hf2NO2 are metal. So we did the calculations with a HSE06 hybrid functional, too. Hence the nanostructure Hf2CS2 changed from metal to semiconductor. The computed band gaps in HSE06 hybrid functional for nanostructures Hf2CO2 and Hf2CS2 were 1.75 and 0.22 eV, respectively. The results obtained in this study are in good agreement with other previous studies. The results show the overall form of band structures is independent of the functional. The distance between conduction and valence bands is the band gap, which is the main difference in calculating the band structure using two functionals. In this study, the band gap difference calculated by these functionals for Hf2CO2 and Hf2CS2 nanostructures is 0.83 and 0.22 eV, respectively. The real and imaginary parts of the dielectric function have been calculated to investigate the optical properties of these nanostructures. We show that the Hf2CO2 nanostructure has high absorption in visible and ultraviolet regions. Thus Hf2CO2 nanostructure may apply in designing optoelectronic devices.

کلیدواژه‌ها [English]

  • Photocatalyst
  • DFT
  • Nanostructure
  • HSE06
  • Band Gap
  • Dielectric Function
[1] Y. Zhao, Y. Zhang, Z. Yang, Y. Yan, K. Sun, Sci. Technol. Adv. Mater, 14, 043501 (2013).
[2] D. J. Late, Y. K. Huang, et al., ACS Nano, 7, 4879, (2013).
[3] B. Radisavljevic, A. Radenovic, et al., Nat. Nanotechnol, 6, 147–150 (2011).
[4] K. Xu, Z. Wang, et al., Nanotechnology, 24, 465705 (2013).
[5] M. Chhowalla, H. S. Shin, et al., Nat. Chem, 5, 263 (2013).
[6] J. Low, J. Yu, J. Phys. Chem. Lett, 6, 4244-4251 (2015).
[7] L. Yang, Y. Liu, et al., Chin. J. Catal, 39, 646-653 (2018).
[8] K. L. He, J. Xie, M. L. Li, X. Li, Appl. Surf. Sci, 430, 208-217 (2018).
[9] P. Kuang, M. He, et al., Appl. Catal. B-Environ, 254, 15-25 (2019).
[10] Q. Yan, G. M. Huang, et al., J. Mater. Sci. Technol, 34, 2515-2520 (2018).
[11] Y. Hu, H. Y. Zhao, et al., J. Mater. Sci. Technol (2019).
[12] P. Zhang, Q. Ru, et al., J. Mater. Sci. Technol, 35, 1840-1850 (2019).
[13] F. Han, S. Luo, et al., ACS Appl. Energy Mater, 11, 8443-8452 (2019).
[14] X. Zhang, X. Liu, S. Dong, J. Yang, Y. Liu, Appl. Mater. Today, 16, 315-321 (2019).
[15] N. Zhang, X. Jiang, et al., Nanotechnology, 30, 505201 (2019).
[16] Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, Adv. Mater, 28, 1917-1933 (2016).
[17] P. Kuang, T. Tong, K. Fan, J. Yu, ACS Catal, 7, 6179-6187 (2017).
[18] J. Fu, J. Yu, C. Jiang, Adv. Energy Mater, 8, 1701503 (2018).
[19] Z. Li, Y. N. Ma, et al., Chin. J. Catal, 40, 434-445 (2019).
[20] D. He, Z. Zhang, et al. Chem. Eng. J, 384, 123258 (2020).
[21] Q. Zhang, J. Zhang, et al., Appl. Surf. Sci, 504, 144366 (2020).
[22] Q. Tang, Z. Zhou, Z. F. Chen, J. Phys. Chem. C, 115, 18531–18537 (2011).
[23] W. Chen, Y. F. Li, et al., J. Am. Chem. Soc, 132, 1699–1705 (2010).
[24] L. Cheng, X. Li, H. Zhang, Q. Xiang, J. Phys. Chem. Lett, 10, 3488-3494 (2019).
[25] X. Zhang, Z. Zhang, et al., J. Mater. Chem. A, 5, 12899-12903 (2017).
[26] M. Naguib, M. Kurtoglu, et al., Advanced Materials 23(37), 4248-53 (2011).
[27] M. Naguib, O. Mashtalir, et al., ACS Nano, 6(2), 1322-31 (2012).
[28] M. W. Barsoum, M. Radovic, Annu. Rev. Mater. Res, 41, 195 (2011).
[29] H. Zou, B. He, P. Kuang, J. Yu, K. Fan, ACS Appl. Mater. Interfaces, 10, 22311-22319 (2018).
[30] J. Peng, X. Chen, W. Ong, X. Zhao, N. Li, Chem, 5, 18-50 (2019).
[31] M. Naguib, J. Halim, Journal of the American Chemical Society, 135(43), 15966-9 (2013).
[32] M. R. Lukatskaya, O. Mashtalir, et al., Science, 341, 1502 (2013).
[33] M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, Adv. Mater, 26, 992 (2014).
[34] C. Si, J. Zhou, Z. Sun, ACS Appl. Mater. Interfaces, 7, 17510 (2015).
[35] M. Khazaei, M. Arai, Adv. Funct. Mater, 23, 2185 (2013).
[36] Z. Guo, L. Zhu, J. Zhou, Z. Sun, RSC Adv, 5, 25403 (2015).
[37] A. K. Singh, K. Mathew, H. L. Zhuang, R. G. Hennig, J. Phys. Chem. Lett, 6, 1087 (2015).
[38] J. Liao, B. Sa, J. Zhou, R. Ahuja, Z. Sun, J. Phys. Chem. C, 118, 17594 (2014).
[39] M. Ni, D. Y. Leung, M. K. Leung, K. Sumathy, Fuel Processing Technology, 87, 461–472 (2006).
[40] M. Sterner, M. Jentsch, U. Holzhammer, "Energiewirtschaftliche und kologische Bewertung eines Windgas-Angebotes", Fraunhofer IWES, Kassel (2011).
[41] D. Stolten, V. Scherer, "Transition to Renewable Energy Systems, First Edition", Germany: Wiley-VCH Verlag GmbH & Co. KgaA, 1–977 (2013).
[42] Q. Xie, Y. Wang, et al., Catalysis Communications, 27, 21-25 (2012).
[43] N. L. Wu, M. S. Lee, Journal of Hydrogen Energy, 29, 1601-1605 (2004).
[44] C. H. Liao, C. W. Huang, J. Wu, Catalysts, 2, 490-516 (2012).
[45] A. Meng, L. Zhang, B. Cheng, J. Yu, Adv. Mater, 31, 1807660 (2019).
[46] J. Low, J. Yu, et al., Advanced materials, 29(20), 1601694 (2017).
[47] B. Wang, J. T. Zhang, F. Huang, Appl. Surf. Sci, 391, 449-456 (2017).
[48] Y. B. Li, Z. L. Jin, L. J. Zhang, K. Fan, Chin. J. Catal, 40, 390-402 (2019).
[49] Q. Xiang, J. Yu, M. Jaroniec, Chem. Soc. Rev, 41, 782-796 (2012).
[50] M. Hu, Z. Yao, X. Wang, Ind. Eng. Chem. Res, 56, 3477-3502 (2017).
[51] M. Pagliaro, A. G. Konstandopoulos, "Solar Hydrogen: Fuel of the Future", Cambridge, UK: Royal Society of Chemistry (2012).
[52] H2@Scale concept. (2017). US department of energy. http://www.energy.gov/eere/ fuelcells/h2scale.
[53] J. P. Perdew, K. Burke, Y. Wang, Phys. Rev. B: Condens. Matter Mater. Phys, 54, 16533 (1996).
[54] J. Hafner, Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond, J. Comput. Chem, 29, 2044 (2008).
[55] G. Kresse, J. Hafner, Phys. Rev. B: Condens. Matter Mater. Phys, 48, 13115 (1993).
[56] J. Heyd, G. E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys, 118, 8207 (2003).
[57] J. Liao, B. Sa, J. Zhou, R. Ahuja, Z. Sun, J. Phys. Chem. C, 118, 17594 (2014).
[58] B. Sa, Y. L. Li, et al., J. Phys. Chem. C, 118, 26560 (2014).
[59] K. Momma, J. Izumi, J. Appl. Crystallogr, 44, 1272 (2011).
[60] Z. Guo, J. Zhou, L. Zhu, Z. Sun, Journal of Materials Chemistry A, 4(29), 11446-11452 ( 2016).
[61] F. Birch, Physical review, 71(11), 809 (1947).
[62] S. Rastegar, A. Rastkar Ebrahimzadeh, J. Jahanbin Sardroodi, Journal of Nanoanalysis, 2021.
[63] X. H. Zha, Q. Huang, et al., Scientific reports, 6(1),  1-10 (2016).
[64] D. Ter Haar, Nature, 178(4529), 337-8 (1956).
[65] S. Saha, T. P. Sinha, A. Mookerjee, Physical Review B, 62(13), 8828-34 (2000).
[66] F. Wooten, "Optical properties of solids", Academic Press, New York (1972).
[67] H. A. Kramers, Collected, "Science Papers", North Holland, Amsterdam (1956).
[68] J. S. Tell, Phys. Rev, 104, 1760 (1956).
[69] L. D. Landau, E. M. Lifshitz, "Electrodynamic in Continuous Media, Pergamon ", press, Oxford (1960).