مروری برخواص نانو ذرات مغناطیسی جهت تشخیص و دارورسانی هدفمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 هیات علمی پژوهشگاه علوم و فنون هسته ای

2 کارشناس

چکیده

در سال‌های اخیر، فناوری نانو به صورت گسترده‌ای در پزشکی و داروسازی مورد مطالعه و بررسی قرار گرفته است. بدین منظور، این فناوری در توسعه تکنولوژی نوین تصویربرداری جهت تشخیص زود هنگام و درمان کارآمدتر بیماری‌هایی مانند سرطان، سیالهای مغناطیسی، کاتالیزور، زیست فناوری/زیست پزشکی، تصویر برداری رزونانس مغناطیسی، ذخیره اطلاعات و ..... به کار گرفته می‌شوند. نانوذرات مغناطیسی با توجه به اینکه امکان کنترل از راه دورآنها با استفاده از به کارگیری یک میدان مغناطیسی خارجی امکان‌پذیر می‌باشد، می‌توانند در طراحی سیستم‌های دارورسانی هدفمند مورد استفاده قرار گیرند. بنابراین اتصال حامل به عامل درمانی در طول عمل درمان به یکی از روش های مناسب جهت درمان تومورهای سرطانی می‌باشد. از این رو استفاده از رادیونوکلئیدها به عنوان عامل درمانی که می توانند بدون جدا شدن از حامل مغناطیسی و با تابش‌های ساطع شده توسط رادیونوکلئیدها، سلول های سرطانی را تخریب کنند، به عنوان یک روش مطلوب مورد توجه قرار گرفته است. بدین ترتیب این مواد به عنوان عوامل درمانی و یا تشخیصی وارد جریان خون شده و با استفاده از یک آهنربای خارجی در بافت هدف متمرکز می‌شود و باعث کاهش دز مصرفی دارو، عدم توزیع سیستمیک دارو در بدن و در نتیجه کاهش بروز عوارض جانبی می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

A review of the properties of magnetic nanoparticles for targeted diagnosis and drug delivery

چکیده [English]

In recent years, the nanotechnology has been extensively studied in medicine and pharmacy. For this purpose, this technology has been used in the development of new imaging technology for early detection and more efficient treatment of diseases such as cancer, magnetic fluids, catalysts, biotechnology/biomedicine, magnetic resonance imaging, information storage, etc. Magnetic nanoparticles are often utilized in the planning of targeted drug delivery systems due to the possibility of their device using an external magnetic field. In current years, nanotechnology has been considerably studied in remedy and pharmacy. To this end, this generation has been used with inside the improvement of the latest imaging generation for early detection and extra green remedy of sicknesses inclusive of cancer, magnetic fluids, catalysts, biotechnology/biomedicine, magnetic resonance imaging, data storage, thus, these substances enter the bloodstream as therapeutic or diagnostic agents and are concentrated in the target tissue using an external magnet, reducing the dose of the drug, not systemically distributing the drug within the body, and therefore reducing the incidence of side effects.

کلیدواژه‌ها [English]

  • Magnetic nanoparticles
  • Hyperthermia
  • Magnetic resonance imaging
  • Targeted drug delivery
[1].       J. Kurczewska, Materials Chemistry and Physics. 211, 34-41,(2018).
[2].       T. Yih, Journal of cellular biochemistry. 97, 1184-1190,(2006).
[3].       M. J. Mitchell, Nature Reviews Drug Discovery. 20, 101-124,(2021).
[4].       T. Dai, Biomaterials Science. 8, 3784-3799,(2020).
[5].       A. A. Yetisgin, Molecules (Basel, Switzerland). 25, 2193,(2020).
[6].       P. Chelle, Clinical Pharmacokinetics. 59, 245-256,(2020).
[7].       S. Marchesan, ACS Medicinal Chemistry Letters. 4, 147-149,(2013).
[8].       J. K. Patra, Journal of  Nanobiotechnology. 16, 71, (2018)
[9].       M. M. Mohareri, Main Group Chemistry. Preprint, 1-11,(2021).
[10].     E. Alphandéry, Drug Discovery Today. 25, 141-149,(2020).
[11].     J.E. Kim, Archives of toxicology. 86, 685-700,(2012).
[12].     H.W. Yang, Nanotechnology, science and applications. 5, 73, (2012).
[13].     A. Gholami, Drug metabolism reviews. 52, 205-224,(2020).
[14].     O. Veiseh, Advanced drug delivery reviews. 62, 284-304,(2010).
[15].     W. Gao, Journal of drug targeting. 23, 619-626,(2015).
[16].     I. Lisiecki, Journal of the American Chemical Society. 115, 3887-3896, (1993).
[17].     X.H. Peng, International journal of nanomedicine. 3, 311,(2008).
[18].     K. Subramani, Current Nanoscience. 5, 135-140,(2009).
[19].     J. Frenkel, Nature. 126, 274-275,(1930).
[20].     M. Mahmoudi, Colloids and Surfaces B: Biointerfaces. 75, 300-309, (2010).
[21].     T. Osaka, Colloids and Surfaces B: Biointerfaces. 71, 325-330,(2009).
[22].     Q. Feng, Scientific reports. 8, 1-13,(2018).
[23].     M. A. Abakumov, Journal of biochemical and molecular toxicology. 32, 22225,(2018).
[24].     A. M. Predescu, Royal Society open science. 5, 171525,(2018).
[25].     S. Laurent, Chemical reviews. 108, 2064-2110,(2008).
[26].     S. A. M. K. Ansari, Materials. 12, 465,(2019).
[27].     Z. Gao, Advanced Science. 7, 1901624,(2020).
[28].     A. López-Cruz, Journal of Materials Chemistry. 19, 6870-6876, (2009).
[29].     I. Hilger, Academic radiology. 9, 198-202,(2002).
[30].     L. Babes, Journal of colloid and interface science. 212, 474-482,(1999).
[31].     H. Wei, Proceedings of the national academy of sciences. 114, 2325-2330,(2017).
[32].     K. J. Widder, Advances in Pharmacology. 16, 213-271,(1979).
[33].     A. S. Garanina, Nanomedicine: Nanotechnology, Biology and Medicine. 25, 102171,(2020).
[34].     C. Iacovita, Molecules. 21, 1357,(2016).
[35].     M. Freeman, Journal of Applied Physics. 31, S404-S405,(1960).
[36].     S. M. Moghimi, Pharmacological reviews. 53, 283-318,(2001).
[37].     S. Douglas, Critical reviews in therapeutic drug carrier systems. 3, 233-261,(1987).
[38].     S. M. Janib, Advanced drug delivery reviews. 62, 1052-1063,(2010).
[39].     M.M. Swidan, DARU Journal of Pharmaceutical Sciences. 27, 49-58,(2019).
[40].     E. Sattarzadeh, Journal of Radioanalytical and Nuclear Chemistry. 317, 1333-1339,(2018).
[41].     E. S. Khameneh, Radiochimica Acta. 106, 897-907,(2018).
[42].     Z. Pourmanouchehri, Journal of Inorganic and Organometallic Polymers and Materials. 28, 1980-1990,(2018).
[43].     S. Kakaei, Current Nanoscience. 16, 608-616,(2020).
[44].     H. Tayeri, International Journal of Radiation Research. 18, 235-241,(2020).