مروری بر نانو حباب ها: روش‌های تولید، ویژگی‌ها و مطالعات نظری

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه تهران

چکیده

نانو حباب‌ها، حباب‌هایی با ابعاد نانو هستند که می‌توانند بر روی سطوح جامد و یا در محلول تشکیل شوند. از این رو کاربرد-های مهمی در بسیاری از فرآیند‌های فیزیکی و شیمیایی و زیستی دارند. درک ویژگی‌های اساسی حباب‌ها مانند پایداری، رشد و انحلال آن‌ها می‌تواند در کاربردهای بیشتر آن‌ها کمک کند. در سال‌های اخیر مطالعات تجربی و نظری بسیاری در حوزه‌ی نانو حباب‌ها انجام شده است. در این مقاله‌ی مروری، روش‌های تولید نانو حباب‌ها، کاربرد، پایداری و طول عمر و برخی از ویژگی های آن‌ها به صورت تجربی و نظری به ویژه با رویکرد شبیه‌سازی دینامیک مولکولی ارائه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

A review on nanobubbles: Methods of production, characterizations and computational studiesA review on nanobubbles: Methods of production, characterizations and computational studies

             [1] J.R. Seddon, D. Lohse, J. Phys. Condens. Matter, 23, 133001–133023, (2011).
             [2] N. Ishida, T. Inoue, M Miyahara, K. Higashitani, Langmuir, 16, 6377–6380, (2000).
             [3] S.T. Lou, Z.Q. Ouyang, Y. Zhang, X.J. Li, J. Hu, M.Q. Li, F.J. Yang, J. Vac. Sci. Technol. B, 18, 2573–2575, (2000).
             [4] M.A. Hampton, B.C. Donose, A.v. Nguyen, J. Colloid. Interface. Sci, 325, 267–274, (2008).
             [5] S. Peng, T.L. Mega, X. Zhang, Langmuir, 32, 11265–11272, (2016).
             [6] M. Guan, W. Guo, L. Gao, Y. Tang, J. Hu, Y. Dong, Chem Phys Chem, 13, 2115–2118, (2012).
             [7] W. Guo, H. Shan, M. Guan, L. Gao, M. Liu, Y. Dong, Surf. Sci, 606, 1462–1466, (2012).
             [8] X.H. Zhang, W. Ducker, Langmuir, 23, 12478–12480, (2007).
             [9] Z. Lu, S. Peng, X. Zhang, Langmuir, 32, 1700–1706, (2016).
             [10] J.R. Adleman, D.A. Boyd, D.G. Goodwin, D. Psaltis, Nano Lett, 9, 4417–4423. (2009).
             [11] P. Christopher, H. Xin, S. Linic, Nat. Chem, 3, 467–472, (2011).
             [12] O. Neumann, A. Urban, J. Day, S. Lal, P. Nordlander, N.J. Halas, ACS nano, 7, 42–49, (2013).
             [13] A. Polman, ACS Nano, 7, 15–18, (2013).
             [14] A.K. Ahmed, X. Shi, L. Hua, L. Manzueta, W. Qing, T. Marhaba, W. Zhang, J. Agric. Food Chem, 66, 5117–5124, (2018).
             [15] S. Liu, S. Oshita, S. Kawabata, Y. Makino, T. Yoshimoto, Langmuir, 32, 11295–11302, (2016).
             [16] S. Calgaroto, A. Azevedo, J. Rubio, Miner. Eng, 89, 24–29, (2016).
             [17] M. Fan, D. Tao, R. Honaker, Z. Luo, Min Sci Technol, 20, 641–671, (2010).
             [18] A. Agarwal, W.J. Ng, Y. Liu, Chemosphere, 84, 1175–1180, (2011).
              [19] A.J. Atkinson, O.G. Apul, O. Schneider, S. Garcia-Segura, P. Westerhoff, Acc. Chem. Res, 52, 1196–1205, (2019).
              [20] Z.H. Wu, H.B. Chen, Y.M. Dong, H.L. Mao, J.L. Sun, S.F. Chen, J. Hu, J. Colloid. Interface. Sci, 328, 10–14, (2008).
              [21] E.Y. Lukianova Hleb, E.Y. Hanna, J.H. Hafner, D.O. Lapotko, Nanotechnology, 27, 085102–085112, (2016).
              [22] J. Shao, M. Xuan, L. Dai, T. Si, J. Li, Q. He, Angew. Chem. Int. Ed, 54, 12782–12787, (2015).
              [23] Z. Qin, J.C. Bischof, Chem. Soc. Rev, 41, 1191–1217, (2012).
              [24] A.O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, N.A. Kotov, Nanoscale Res. Lett, 1, 84–90, (2006).
              [25] G. Baffou, H. Rigneault, Phys. Rev. B, 84, 035415–035428, (2011).
              [26] M. Foroutan, M. Darvishi, S.M. Fatemi, Phys. Rev. E, 96, 1–10, (2017).
              [27] K. Sasikumar, P. Keblinski, J. Chem. Phys, 141, 234508–234515, (2014).
              [28] S. Merabia, P. Keblinski, L. Joly, L.J. Lewis, J.L. Barrat, Phys. Rev. E, 79, 2–5, (2009).
              [29] J. Lombard, T. Biben, S. Merabia, Phys. Rev Lett, 112, 105701–105706, (2014).
              [30] S. Maheshwari, M. van der Hoef, A. Prosperetti, D. Lohse, J. Phys. Chem. C, 122, 20571–20580, (2018).
              [31] X. She, T.A. Shedd, B. Lindeman, Y. Yin, X. Zhang, Int. J. Heat Mass Transf, 95, 278–287, (2016).
              [32].D. Voiry, H.S. Shin, K.P. Loh, M. Chhowalla, Nat. Rev. Chem, 2, 0105–0122, (2018).
              [33] L. Zhang, Y. Zhang, X. Zhang, Z. Li, G. Shen, M. Ye, C. Fan, H. Fang, J. Hu, Langmuir, 22, 8109–8113, (2006).
              [34] Y. Li, W. Gao, L. Ci, C. Wang, P.M. Ajayan, Carbon, 48, 1124–1130, (2010).
              [35] M.A. Rahim, R.A. Hameed, M.W. Khalil, J. Power Sources, 134, 160–169, (2004).
              [36] R.K. Karlsson, A. Cornell, Chem. Rev, 116, 2982–3028, (2016).
              [37] L. Luo, H.S. White, Langmuir, 29, 11169–11175, (2013).
              [38] Q. Chen, L. Luo, H.S. White, Langmuir, 31, 4573–4581, (2015).
              [39] S.K. Mazloomi, N. Sulaiman, Renew. Sustain. Energy Rev, 16, 4257–4263, (2012).
              [40] S. Mao, Z. Wen, T. Huang, Y. Hou, J. Chen, Energy Environ Sci, 7, 609–616, (2014).
              [41] Q. Chen, L. Luo, H. Faraji, S.W. Feldberg, H.S. White, J. Phys. Chem. Lett, 5, 3539–3544, (2014).
              [42] Q. Chen, H.S. Wiedenroth, S.R. German, H.S. White, J. Am. Chem. Soc, 137, 12064–12069, (2015).
              [43] A.M. Soto, S.R. German, H. Ren, D. van der Meer, D. Lohse, M.A. Edwards, H.S. White, Langmuir, 34, 7309–7318, (2018).
              [44] M.A. Edwards, H.S. White, H. Ren, ACS Nano, 13, 6330–6340, (2019).
              [45] Q. Chen, L. Luo, Langmuir, 34, 4554–4559, (2018).
              [46] Q. Chen, R. Ranaweera, L. Luo, J. Phys. Chem. C, 122, 15421–15426, (2018).
              [47] Y.A. Perez Sirkin, E.D. Gadea, D.A. Scherlis, V. Molinero, J. Am. Chem. Soc, 141, 10801–10811, (2019).
              [48] L. Luo, H. Xu, X. Sun, J. Qin, D. Zhou, F. Chen, L. Luo, A. Kumar, C. Wang, X. Lin, S. Sheng, W. Xu, Z. Shang, Langmuir, 36, 11422–11428, (2020).
               [49] M. Foroutan, S.M. Fatemi, F. Esmaeilian, V.F. Naeini, Langmuir, 34, 14085–14095, (2018).
               [50] H. Yaghoubi, M. Foroutan, Phys. Chem. Chem. Phys, 20, 22308–22319, (2018).
               [51] F. Akbari, M. Foroutan, Phys. Chem. Chem. Phys, 20, 4936–4952, (2018).
               [52] Y. Liu, X. Zhang, J. Chem. Phys, 141, 134702–134709, (2014).
               [53] J. Qian, V.S. Craig, M. Jehannin, Langmuir, 35, 718–728, (2019).
               [54] S. Maheshwari, M. van der Hoef, X. Zhang, D. Lohse, Langmuir, 32, 11116–11122, (2016).
               [55] V.B. Svetovoy, I. Dević, J.H. Snoeijer, D. Lohse, Langmuir, 32, 11188–11196, (2016).
               [56] D. Dockar, M.K. Borg, J.M. Reese, Langmuir, 35, 9325–9333, (2018).
               [57] M. DI, Jasma, 20, 252–263, (2003).
               [58] T.V. Quoc, H. Nguyen Dac, T. Pham Quoc, D. Nguyen Dinh, T. Chu Duc, Microsyst. Technol, 21, 911–918, (2015).
               [59] J. Han, J. Zhang, J.W. Carey, Int. J. Greenh. Gas Control, 5, 1680–1683, (2011).
               [60] Z. Liu, W. Ma, M. Zhang, Q. Zhang, R. Xiong, C. Huang, J. Appl. Polym. Sci, 136, 1–8, (2019).
               [61] A.K. Kota, G. Kwon, W. Choi, J.M. Mabry, A. Tuteja, Nat. Commun, 3, 1–8, (2012).
               [62] C. Zhou, J. Cheng, K. Hou, A. Zhao, P. Pi, X. Wen, S. Xu, Chem. Eng. J, 301, 249–256, (2016).
               [63] J. Park, S. Woo, S. Kim, M. Kim, W. Hwang, ACS Omega, 4, 18304–18311, (2019).
               [64] M. Darvishi, M. Foroutan, RSC Adv, 6, 74124–74134, (2016).
               [65] A.T. Nasrabadi, M. Foroutan, J. Phys. Chem. B, 114, 15429–15436, (2010).
               [66] S.M. Fatemi, M. Foroutan, J. Nanostructure Chem, 6, 29–40, (2016).
               [67] W.A. Ducker, Langmuir, 25, 8907–8910, (2009).
               [68] S. Das, J.H. Snoeijer, D. Lohse, Phys. Rev. E, 82, 1–24, (2010).
               [69] X. Zhang, M.H. Uddin, H. Yang, G. Toikka, W. Ducker, N. Maeda, Langmuir, 28, 10471–10477, (2012).
               [70] S.M. Fatemi, M. Foroutan, Adv. Sci. Eng. Med, 6, 583–590, (2014).
               [71] S.M. Fatemi, M. Foroutan, J. Iran. Chem. Soc, 12, 1905–1913, (2015).
               [72] M. Foroutan, N. Heidari, M. Mohammadlou, A.J. Sojahrood, J. Chem. Thermodyn, 40, 1077–1081, (2008).
               [73] K.H. Babazadeh, M. Foroutan, Appl. Surf. Sci, 495, 143628–143638, (2019).