مروری بر نانومواد جاذب مورد استفاده در کلیه مصنوعی پوشیدنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده برق و فناوری اطلاعات، سازمان پژوهش های علمی و صنعتی ایران، تهران، ایران

2 پژوهشکده فناوری های شیمیایی، سازمان پژوهش های علمی و صنعتی ایران، تهران، ایران

چکیده

در راستای بهبود کیفیت زندگی بیماران دیالیزی، لازم است مواد سمی اورمیک به­صورت روزانه از جریان خون حذف شوند. این مواد سمی به­طور کلی شامل مولکول­های کوچک محلول در آب (مانند اوره، اوریک اسید و کراتینین)، مولکول­های متوسط (مانند بتا-2 میکروگلوبولین و سیتوکین­ها) و مواد سمی مقید پروتئینی هستند. هدف این مطالعه، بررسی نانومواد جاذب مورد استفاده در سیستم کلیه مصنوعی پوشیدنی و همچنین، مواد سمی اورمیکی است که به وسیله هر­یک از این جاذب­ها حذف می­شوند. این نانومواد جاذب شامل جاذب Mxene، جاذب CMK-3 و جاذب زئولیت هستند. همچنین مشخصات، مکانیسم جذب و ساختار هر­یک از این جاذب­ها مورد بحث قرار گرفت. به­طور کلی، نانوماده جاذب Mxene، سازگاری بالایی با بدن داشته و می­تواند اوره را جذب سطحی نماید و جاذب CMK-3  قابلیت حذف طیف گسترده­ای از مواد سمی اورمیک شامل کراتینین، بتا-2 میکروگلوبولین، سیتوکین­ها، ایندوکسیل سولفات و هیپوریک اسید را دارد. نانوماده جاذب CMK-3 به علت داشتن گروه­های عاملی اکسیژن­دار بر سطح خود، قابلیت جذب بسیار خوبی برای مواد اورمیک ذکر شده دارد. در مورد نانوماده جاذب زئولیت، جذب بر اساس اندازه و خصوصیات فیزیکی و شیمیایی بوده و این جاذب می­تواند به حذف مواد سمی خون مانند اوره، اوریک اسید، کراتینین، p-cresol و ایندوکسیل سولفات بپردازد. نانومواد جاذب زئولیت موردنیت اسیدی و سیلیکالیت آب­گریز به ترتیب می­توانند کراتینین و p-cresol را حذف کنند.

کلیدواژه‌ها


[1] F. Meng, M. Seredych, C. Chen, V. Gura, S. Mikhalovsky, S. Sandeman, G. Ingavle, T. Ozulumba, L. Miao, B. Anasori, Y. Gogotsi, MXene Sorbents for Removal of Urea from Dialysate: A Step toward the Wearable Artificial Kidney,ACS Nano, 12, 10518-10528, (2018).
[2] D. Pavlenko, D. Giasafaki, G. Charalambopoulou, G., E. van Geffen, K.G.F. Gerritsen, T. Steriotis, D. Stamatialis, Carbon Adsorbents With Dual Porosity for Efficient Removal of Uremic Toxins and Cytokines from Human Plasma, Sci. Rep., 7, 14914, (2017).
[3] M. Ulfa and D. Prasetyoko, Synthesis and Characterization of Ordered Mesoporous Carbon CMK-3 with a High Loading Capacity of Ibuprofen and its Release Performance at Simulated Body Fluid, IOP conf. ser., Mater. Sci. eng., 617, 012001, (2019).
[4] X. Che, X. Yang, J. Yan, Y. Yuan, Q. Ma, L. Ying, M. Zhang, Q. Wang, M. Zhang, Z. Ni, S. Mou, Effects of pretransplant peritoneal vs hemodialysis modality on outcome of first kidney transplantation from donors after cardiac death, BMC Nephrol, 19, 235, (2018).
[5] M.K. van Gelder, J.A.W. Jong, L. Folkertsma, Y. Guo, C. Blüchel, M.C. Verhaar, M. Odijk, C.F. Van Nostrum, Urea removal strategies for dialysate regeneration in a wearable artificial kidney, Biomaterials, 234, 119735, (2020).
[6] M.K. Gelder, S.M. Mihaila, J. Jansen, M. Wester, M.C. Verhaar, J.A. Joles, D. Stamatialis, R. Masereeuw, K. Gerritsen, From portable dialysis to a bioengineered kidney, Expert Rev. Med. Devices, 15, 323-336, (2018).
[7] M.C. Annesini, L. Marrelli, V. Piemonte, L. Turchetti, Chapter 7 - Artificial Kidney,in Artificial Organ Engineering, Springer, London, 163-217, (2017).
[8] C.F. Matta and L. Massa, Chapter 1 - Information Theory and the Thermodynamic Efficiency of Biological Sorting Systems: Case Studies of the Kidney and of Mitochondrial ATP-Synthase, in Sustained Energy for Enhanced Human Functions and Activity, Bagchi D. (Ed.), Academic Press, London, 3-29, (2017).
[9] D.R. Taft, Chapter 9 - Drug Excretion, in Pharmacology, Hacker M., Messer W., and Bachmann K. (Eds.), Academic Press, San Diego, 175-199, (2009).
[10] F. Zanetti, Chapter 7 - Kidney-on-a-chip, in Organ-on-a-chip, Hoeng J., Bovard D., and Peitsch M.C. (Eds.), Academic Press, San Diego, 233-253, (2020).
[11] A.T. Azar, Modeling and Control of Dialysis Systems Volume 1: Modeling Techniques of Hemodialysis Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, (2013).
[12] A. Subramanya and D. Ellison, Distal Convoluted Tubule, Clin. J. Am. Soc. Nephrol., 9, (2014).
[13] W.J. Bacha and L.M. Bacha, Color Atlas of Veterinary Histology, Wiley-Blackwell, Chichester, West Sussex, (2012).
[14] C. Legallais, et al., Bioengineering Organs for Blood Detoxification, Adv. Healthc. Mater., 7, 1800430, (2018). DOI: 10.1002/adhm.201800430
[15] F.F. Karadsheh and M.R. Weir, Chapter 23 - Hematologic Complications of Chronic Kidney Disease: Leukocyte and Monocyte Function, in Chronic Renal Disease, Kimmel P.L., and Rosenberg M.E. (Eds.), Academic Press, San Diego, 277-284, (2015).
[16] I. Campos and P. Kotanko, Chapter 157 - Assessment of Fluid Status and Body Composition and Control of Fluid Balance With Intermittent Hemodialysis in the Critically Ill Patient, in Critical Care Nephrology (Third Edition), Ronco C., et al. (Eds.), Philadelphia, 956-960, (2019).
[17] M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene), Chem. Mater., 29, 7633-7644, (2017).
[18] A. Sundaram, J.S. Ponraj, C. Wang, W.K. Peng, R.K. Manavalan, S.C. Dhanabalan, H. Zhang, J. Gaspar, Engineering of 2D transition metal carbides and nitrides MXenes for cancer therapeutics and diagnostics, J. Mater. Chem. B, 8, 4990-5013, (2020).
[19] Y. Jeong, M. Cui, J. Choi, Y. Lee, J. Kim, Y. Son, J. Khim, Development of modified mesoporous carbon (CMK-3) for improved adsorption of bisphenol-A, Chemosphere, 238, 124559, (2020). DOI: 10.1016/j.chemosphere.2019.124559
[20] M. Ulfa and D. Prasetyoko, Synthesis of Mesoporous Carbon CMK-3 and CMK-5 Materials and Their Application for Drug Loading-Release System,KnE Life Sci., 4, 1-9, (2019).
[21] H. Xu, W. Pei, X. Li, J. Zhang, Highly Efficient Adsorption of Phenylethanoid Glycosides on Mesoporous Carbon, Front. Chem., 7, 781, (2019).
[22] R. Huirache-Acuña, R. Nava, C.L. Peza-Ledesma, J. Lara-Romero, G. Alonso-Núez, B. Pawelec, E.M. Rivera-Muñoz, SBA-15 Mesoporous Silica as Catalytic Support for Hydrodesulfurization Catalysts-Review, Materials (Basel), 6, 4139-4167, (2013).
[23] M. Rahnamaee, K. Shams, M. Naghsh, Synthesis of 4a zeolite from sodium aluminate derived from aluminum trihydroxide and investigation of its crystallization rate, 15th Iranian National Congress of Chemical Engineering,Tehran, University of Tehran, (2014).
[24] P. Iveta, Zeolite as Nanomaterial for Water Treatment in a Production Exploitation, Key Eng. Mater., 756, 44-51, (2017).
[25] B. Mohammadkhani, H. Tabesh, B. Houshmand, B. Mohammadkhani, Investigation on novel applications of zeolites in advanced medical sciences, Research in Medicine, 40, 96-108, (2016).
[26] A. Maleki, Potential of Acid Modified Zeolite for Cadmium Adsorption in Aqueous Environment,J. Mazand. Univ. Med. Sci., 21, 74-85, (2012).
[27] V. Wernert, O. Schäf, H. Ghobarkar, R. Denoyel, Adsorption properties of zeolites for artificial kidney applications,Micropor. Mesopor. Mat., 83, 101-113, (2005).
[28] V. Gura, M.B. Rivara, S. Bieber, R. Munshi, N.C. Smith, L. Linke, J. Kundzins, M. Beizai, C. Ezon, L. Kessler, J. Himmelfarb, A wearable artificial kidney for patients with end-stage renal disease,JCI Insight, 1, e86397, (2016).