نانو ساختارهای فتوترمال جهت شیرین‌سازی آب با استفاده از انرژی خورشیدی

نوع مقاله : مروری

نویسندگان

1 پژوهشکده علوم و فناوری همگرا،گروه علوم و فناوری نانو، دانشگاه صنعتی شریف، تهران، ایران

2 هیئت علمی دانشکده فیزیک دانشگاه صنعتی شریف، رییس پژوهشکده علوم و فناوری نانو

3 دانشکده فیزیک، دانشگاه صنعتی شریف، تهران، ایران

چکیده

استفاده از انرژی خورشیدی به عنوان پاک‌ترین و فراوان‌ترین منبع انرژی دردسترس، به عنوان یک راهکار دوستدار محیط زیست، در غلبه بر مشکل جهانی کمبود آب قابل شرب مطرح است. استفاده از مواد فتوترمال جهت برداشت و ذخیره انرژی خورشیدی در سیستم‌های تولید بخار متداول است. این مواد در سه گروه عمده شامل مواد بر پایه کربن، فلزات پلاسمونیک و نیمه‌هادی‌ها دسته‌بندی می‌شوند. از میان آن‌ها، استفاده از نانو مواد کربنی به دلیل ویژگی‌هایی چون سطح جذب زیاد، فراوانی، قیمت مناسب و دردسترس بودن با استقبال چشمگیر محققان همراه بوده است. در این مقاله با معرفی سیستم‌های تولید بخار خورشیدی به بیان ویژگی‌ها و ساز و کار جذب نور در مواد فتوترمال، با تمرکز بر نانو ساختارهای کربنی پرداخته می‌شود. در ادامه، برخی از تحقیقات انجام شده در این زمینه به اختصار مرور می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Photothermal nanostructures for solar-driven desalination of saline water

نویسندگان [English]

  • maedeh simayee 1
  • azam irajizad 2
  • Ali Esfandiar 3
1 Center for nanoscience and nanotechnology, Institute for convergence science and technology (ICST), Sharif University of Technology, Tehran, Iran.
2 Center for nanoscience and nanotechnology, Institute for convergence science and technology (ICST), Sharif University of Technology, Tehran, Iran.
3 Department of Physics, Sharif University of Technology, Tehran, Iran
چکیده [English]

The utilization of solar energy as the cleanest and most abundant source of energy available, as an environmentally friendly solution, is proposed to overcome the global problem of lack of potable water. It is common to use photothermal materials to harvest and store solar energy in steam production systems. These materials are classified into three main groups, including carbon-based materials, plasmonic metals, and semiconductors. Among them, the use of carbon nanomaterials has been greatly welcomed by researchers. this attention is due to its appropriate features such as high absorption level, abundance, reasonable price, and availability in nature. In this article, by introducing solar steam production systems (SSG), the characteristics and mechanism of light absorption in photothermal materials are discussed. This paper is focusing on the carbon nanomaterials, especially graphene as an attractive two-dimensional nanostructure with unique optical properties. In the following, some of the research conducted in this field are briefly reviewed.

کلیدواژه‌ها [English]

  • solar energy
  • vapor
  • photothermal
[1]        Vörösmarty CJ, Green P, Salisbury J, Lammers RB. Global water resources: Vulnerability from climate change and population growth. Science (80- ). 2000;289(5477):284–8.
[2].       Ercin AE, Hoekstra AY. Water footprint scenarios for 2050: A global analysis. Environ Int [Internet]. 2014;64:71–82. Available from: http://dx.doi.org/10.1016/j.envint.2013.11.019
[3].       Mekonnen MM, Hoekstra AY. Sustainability: Four billion people facing severe water scarcity. Sci Adv. 2016;2(2):1–7.
[4].      Elsheikh AH, Sharshir SW, Ahmed Ali MK, Shaibo J, Edreis EMA, Abdelhamid T, et al. Thin film technology for solar steam generation: A new dawn. Sol Energy [Internet]. 2019;177(November 2018):561–75. Available from: https://doi.org/10.1016/j.solener.2018.11.058
[5].      Zhu L, Gao M, Peh CKN, Ho GW. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy. 2019;57(December 2018):507–18.
[6].      Verbeke R, Gómez V, Vankelecom IFJ. Chlorine-resistance of reverse osmosis (RO) polyamide membranes. Prog Polym Sci [Internet]. 2017;72:1–15. Available from: http://dx.doi.org/10.1016/j.progpolymsci.2017.05.003
[7].      Elimelech M, Phillip WA. The future of seawater desalination: Energy, technology, and the environment. Science (80- ). 2011;333(6043):712–7.
[8].      Khawaji AD, Kutubkhanah IK, Wie JM. Advances in seawater desalination technologies. Desalination. 2008;221(1–3):47–69.
[9].      Huang J, He Y, Wang L, Huang Y, Jiang B. Bifunctional Au@TiO2 core–shell nanoparticle films for clean water generation by photocatalysis and solar evaporation. Energy Convers Manag [Internet]. 2017;132:452–9. Available from: http://dx.doi.org/10.1016/j.enconman.2016.11.053
[10].    Lou J, Liu Y, Wang Z, Zhao D, Song C, Wu J, et al. Bioinspired Multifunctional Paper-Based rGO Composites for Solar- Driven Clean Water Generation. 2016;
[11].    Bang J, Moon IK, Oh J. Three-dimensional multimodal porous graphene-carbonized wood for highly efficient solar steam generation. Sustain Energy Technol Assessments [Internet]. 2023;57(March 2022):103199. Available from: https://doi.org/10.1016/j.seta.2023.103199
[12].    Zhu L, Gao M, Peh CKN, Ho GW. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater Horizons. 2018;5(3):323–43.
[13].    Chang Y, Ma X, Zhao P. Solar Energy Materials and Solar Cells Flexible MoO 2 coated PTEF membrane for stable solar steam generation in harsh environments. Sol Energy Mater Sol Cells [Internet]. 2023;254(February):112240. Available from: https://doi.org/10.1016/j.solmat.2023.112240
[14].    Zhang L, Tang B, Wu J, Li R, Wang P. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating. Adv Mater. 2015;27(33):4889–94.
[15].    Liu Y, Yu S, Feng R, Bernard A, Liu Y, Zhang Y, et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv Mater. 2015;27(17):2768–74.
[16].    Teng C, Xie D, Wang J, Zhu Y, Jiang L. A strong, underwater superoleophobic PNIPAM-clay nanocomposite hydrogel. J Mater Chem A. 2016;4(33):12884–8.
[17].    Yang J, Pang Y, Huang W, Shaw SK, Schiffbauer J, Pillers MA, et al. Functionalized Graphene Enables Highly Efficient Solar Thermal Steam Generation. ACS Nano. 2017;11(6):5510–8.
[18].    Deng Z, Zhou J, Miao L, Liu C, Peng Y, Sun L, et al. The emergence of solar thermal utilization: Solar-driven steam generation. J Mater Chem A. 2017;5(17):7691–709.
[19].    Li X, Li J, Lu J, Xu N, Chen C, Min X, et al. Enhancement of Interfacial Solar Vapor Generation by Environmental Energy. Joule [Internet]. 2018;2(7):1331–8. Available from: https://doi.org/10.1016/j.joule.2018.04.004
[20].    Shang W, Deng T. Solar steam generation: Steam by thermal concentration. Nat Energy [Internet]. 2016;1(9):1–2. Available from: http://dx.doi.org/10.1038/nenergy.2016.133
[21].    Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat Photonics. 2016;10(6):393–8.
[22].    Dao V-D, Choi H-S. Carbon-Based Sunlight Absorbers in Solar-Driven Steam Generation Devices. Glob Challenges [Internet]. 2018;1700094:1700094. Available from: http://doi.wiley.com/10.1002/gch2.201700094
[23].    Tao P, Ni G, Song C, Shang W, Wu J, Zhu J, et al. Solar-driven interfacial evaporation. Nat Energy [Internet]. 2018;3(12):1031–41. Available from: http://dx.doi.org/10.1038/s41560-018-0260-7
[24].    Zhang X, Yang L, Dang B, Tao J, Li S, Zhao S, et al. Nature-inspired design: p- toluenesulfonic acid-assisted hydrothermally engineered wood for solar steam generation. Nano Energy [Internet]. 2020;78(July):105322. Available from: https://doi.org/10.1016/j.nanoen.2020.105322
[25].    Lu Y, Fan D, Xu H, Min H, Lu C, Lin Z, et al. Implementing Hybrid Energy Harvesting in 3D Spherical Evaporator for Solar Steam Generation and Synergic Water Purification. Sol RRL. 2020;4(9):1–11.
[26].    Gao M, Zhu L, Peh CK, Ho GW. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ Sci. 2019;12(3):841–64.
[27].    Zeng Y, Wang K, Yao J, Wang H. Hollow carbon beads for significant water evaporation enhancement. Chem Eng Sci [Internet]. 2014;116:704–9. Available from: http://dx.doi.org/10.1016/j.ces.2014.05.057
[28].    Ni G, Miljkovic N, Ghasemi H, Huang X, Boriskina S V., Lin C Te, et al. Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy. 2015;17:290–301.
[29].    Zeng Y, Yao J, Horri BA, Wang K, Wu Y, Li D, et al. Solar evaporation enhancement using floating light-absorbing magnetic particles. Energy Environ Sci. 2011;4(10):4074–8.
[30].    Liu Y, Chen J, Guo D, Cao M, Jiang L. Floatable, Self-Cleaning, and Carbon-Black-Based Superhydrophobic Gauze for the Solar Evaporation Enhancement at the Air-Water Interface. ACS Appl Mater Interfaces. 2015;7(24):13645–52.
[31].    Zhang Y, Sivakumar M, Yang S, Enever K, Ramezanianpour M. Application of solar energy in water treatment processes: A review. Desalination [Internet]. 2018;428(October 2017):116–45. Available from: https://doi.org/10.1016/j.desal.2017.11.020
[32].    Ito Y, Tanabe Y, Han J, Fujita T, Tanigaki K, Chen M. Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization. Adv Mater. 2015;27(29):4302–7.
[33].    Wang G, Fu Y, Guo A, Mei T, Wang J, Li J, et al. Reduced Graphene Oxide-Polyurethane Nanocomposite Foam as a Reusable Photoreceiver for Efficient Solar Steam Generation. Chem Mater. 2017;29(13):5629–35.
[34].    Xue G, Liu K, Chen Q, Yang P, Li J, Ding T, et al. Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation. ACS Appl Mater Interfaces. 2017;9(17):15052–7.
[35].    Ghasemi H, Ni G, Marconnet AM, Loomis J, Yerci S, Miljkovic N, et al. Solar steam generation by heat localization. 2014;1–7.
[36].    Qu R, Zhang W, Liu N, Zhang Q, Liu Y, Li X, et al. Antioil Ag3PO4 Nanoparticle/Polydopamine/Al2O3 Sandwich Structure for Complex Wastewater Treatment: Dynamic Catalysis under Natural Light. ACS Sustain Chem Eng. 2018;6(6):8019–28.
[37].    Simayee M, zad AI, Esfandiar A. Synergistic effect of reduced graphene oxide and carbon black as hybrid light absorber for efficient and antifouling texture-based solar steam generator. Sol Energy [Internet]. 2022;238(March):226–37. Available from: https://doi.org/10.1016/j.solener.2022.04.042
[38].    Chen C, Kuang Y, Hu L. Challenges and Opportunities for Solar Evaporation. Joule [Internet]. 2019;3(3):683–718. Available from: http://dx.doi.org/10.1016/j.joule.2018.12.023
[39].    Hao W, Chiou K, Qiao Y, Liu Y, Song C, Deng T, et al. Crumpled graphene ball-based broadband solar absorbers. Nanoscale. 2018;10(14):6306–12.
[40].    Guan W, Guo Y, Yu G. Carbon Materials for Solar Water Evaporation and Desalination. Small. 2021;17(48):1–17.
[41].    Karami M, Bahabadi MAA, Delfani S, Ghozatloo A. Solar Energy Materials & Solar Cells A new application of carbon nanotubes nano fl uid as working fl uid of low-temperature direct absorption solar collector. Sol Energy Mater Sol Cells [Internet]. 2014;121:114–8. Available from: http://dx.doi.org/10.1016/j.solmat.2013.11.004
[42].    Hordy N, Rabilloud D, Meunier JL, Coulombe S. High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors. Sol Energy [Internet]. 2014;105:82–90. Available from: http://dx.doi.org/10.1016/j.solener.2014.03.013
[43].    Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, et al. Interfacial heat flow in carbon nanotube suspensions. 2003;(1):731–4.
[44].    Wang G, Fu Y, Ma X, Pi W, Liu D, Wang X. Reusable reduced graphene oxide based double-layer system modified by polyethylenimine for solar steam generation. Carbon N Y [Internet]. 2017;114:117–24. Available from: http://dx.doi.org/10.1016/j.carbon.2016.11.071
[45].    Sajadi SM, Farokhnia N, Irajizad P, Hasnain M, Ghasemi H. Flexible artificially-networked structure for ambient/high pressure solar steam generation. J Mater Chem A. 2016;4(13):4700–5.
[46].     Zhang P, Li J, Lv L, Zhao Y, Qu L. Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water. ACS Nano. 2017;11(5):5087–93.
[47].     Yan D, Li Y, Huo J, Chen R, Dai L, Wang S. Defect Chemistry of Nonprecious-Metal Electrocatalysts for Oxygen Reactions. Adv Mater. 2017;29(48):1–20.
[48].     Zhang Y, Xiong T, Nandakumar DK, Tan SC. Structure Architecting for Salt-Rejecting Solar Interfacial Desalination to Achieve High-Performance Evaporation With In Situ Energy Generation. Adv Sci. 2020;7(9).
[49].     Zhang Q, Yang H, Xiao X, Wang H, Yan L, Shi Z, et al. A new self-desalting solar evaporation system based on a vertically oriented porous polyacrylonitrile foam. J Mater Chem A. 2019;7(24):14620–8.
[50].     Yang Y, Zhao H, Yin Z, Zhao J, Yin X, Li N, et al. A general salt-resistant hydrophilic/hydrophobic nanoporous double layer design for efficient and stable solar water evaporation distillation. Mater Horizons. 2018;5(6):1143–50.