مروری برکاربرد نانوساختارها بر پایه چارچوب‌های فلز-آلی در جذب و ذخیره‌سازی هیدروژن

نوع مقاله : مروری

نویسندگان

1 گروه شیمی، دانشکده علوم، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 گروه فنی و مهندسی، دانشکده مکانیک، دانشگاه یزد، ایران

چکیده

هیدروژن این پتانسیل را دارد که یک منبع انرژی پاک امیدوارکننده برای جایگزینی سوخت‌های فسیلی تجدیدناپذیر باشد. ناتوانی در ذخیره سازی موثر هیدروژن و نگرانی‌های ایمنی آن چیزی است که از استفاده از آن به عنوان سوخت جایگزین جلوگیری می-کند. سیستم های جذب هیدروژن فعلی، مانند ذخیره سازی کوچک و مایع، برای استفاده در کاربردهای عملی بسیار گران هستند. چارچوب‌های آلی فلزی (MOFs) مواد کریستالی با سطح وسیع، تخلخل بالا و جذب هیدروژن عالی هستند. جذب فیزیولوژیکی هیدروژن در MOF ها توسط یک جاذبه واندروالسی ضعیف انجام می‌شود که به راحتی با مقدار مناسب گرما یا فشار قابل برگشت است. نحوه بهبود سطح و همچنین توانایی MOFها برای جذب هیدروژن مورد بررسی قرار گرفته است. مکانیسم سرریز هیدروژن نشان داده شده است که ذخیره سازی با چگالی بالا را در مقایسه با سایر سیستم ها ارائه می‌دهد. به منظور تبدیل هیدروژن ذخیره شده به انرژی، MOF ها می‌توانند به عنوان غشاهای تبادل پروتون و الکترودهای سلول‌های سوختی مورد استفاده قرارگیرند. از آنجایی که MOF ها رسانایی پایینی دارند، ناخالص سازی امکان استفاده از آن‌ها را در سلول‌های سوختی فراهم می‌کند. بنابراین، با تبدیل کربن به سلول‌های سوختی، این فناوری سازگار با محیط زیست می‌تواند به کاهش کربن در محیط‌های صنعتی کمک کند. علاوه بر این، ظرفیت هیدروژن برای جذب به عنوان سوخت برای خودروهای هیدروژنی باید در محدوده (100 بار یا کمتر) باشد. روش‌های اولیه‌ای که می‌توانند ذخیره‌سازی هیدروژن را برای استفاده از هیدروژن به‌عنوان سوخت بهبود بخشند، همراه با امکان پیشرفت بیشتر برای برآوردن نیازهای انرژی در آینده، در این مطالعه پوشش داده شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A review of the application of nanostructures based on metal-organic frameworks in hydrogen absorption and storage

نویسندگان [English]

  • Haniyeh barghi jahromi 1
  • Mashaallah Rahmani 1
  • mohammad saleh barghi jahromi 2
1 Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan 98135-674, Iran
2 Mechanical Engineering, Energy Conversion, Yazd University, Yazd, Iran
چکیده [English]

Hydrogen has the potential to be a promising clean energy source to replace non-renewable fossil fuels. The inability to store hydrogen effectively and safety concerns are what prevent it from being used as a substitute fuel. Current hydrogen capture systems, such as small and liquid storage, are too expensive for use in practical applications. Metal-organic frameworks (MOFs) are crystalline substances with a huge surface area, a high porosity, and excellent hydrogen absorption. The physiological adsorption of hydrogen in MOFs is brought on by a weak van der Waals attractive attraction, which is easily reversible with the right amount of heat or pressure. It has been looked at how to improve the surface area, as well as the ability of MOFs to absorb hydrogen.The hydrogen overflow mechanism has been shown to offer high-density storage in comparison to other systems. In order to turn hydrogen that has been stored into energy, MOFs can be utilized as proton exchange membranes and electrodes for fuel cells. Because MOFs have a low conductivity, doping allows for their use in fuel cells. Thus, by converting carbon into fuel cells, this eco-friendly technology can aid in reducing carbon in industrial settings. Additionally, the capacity of hydrogen to be absorbed as a fuel for hydrogen cars must fall within the range (100 bar or less). The primary methods that could improve hydrogen storage for using hydrogen as a fuel were covered in this study, along with the possibility for further advancement to satisfy future energy demands.

کلیدواژه‌ها [English]

  • parameters affecting storage
  • metal-organic frameworks
  • hydrogen storage
  • mechanism
  • hydrogen
 
[1] Barghi Jahromi MS, Kalantar V, Akhijahani HS, Kargarsharifabad H. Recent progress on solar cabinet dryers for agricultural products equipped with energy storage using phase change materials. Journal of Energy Storag2022;51:104434. https://doi.org/10.1016/j.est.2022.104434
[2] Barghi Jahromi MS, Iranmanesh M, Samimi Akhijahani H. Thermo-Economic evaluation of a solar dryer with evacuated heat pipe collector and energy storage. Journal of Applied and Computational Sciences in Mechanics. 2021;32(1):39-58. https://doi.org/10.22067/jacsm.2021.56640.0
[3] Barghi Jahromi MS, Iranmanesh M. Experimental investigation on the use of PCM in a pistachio solar dryer by the evacuated heat pipe solar collector. Journal of Pistachio Science and Technology. 2019; 3(6): 73-87.
[4] Barghi Jahromi MS, Kalantar V, Abdolrezaie M. Experimental Study of Effect of Storage Phase Change Materials (PCM) on the Function of a Passive Solar Ventilator. Modares Mechanical Engineering. 2020; 20(7): 1709-1717. 20.1001.1.10275940.1399.20.7.23.6
[5] Zacharia R, Rather SU. Review of solid state hydrogen storage methods adopting different kinds of novel materials. Journal of Nanomaterials. 2015; 2015: 1-18. https://doi.org/10.1155/2015/914845
[6] Kamali K, Barghi Jahromi MS, Sefid M. Energy and Exergy Analysis of a Direct Solar Steam Power Plant with Solar Parabolic Concentrator for Yazd City with Several Water Preheaters. Karafan Quarterly Scientific Journal. 2022;19(1):333-355. https://doi.org/10.48301/kssa.2021.287183.1540
[7] Suksaengrat P, Amornkitbamrung V, Srepusharawoot P, Ahuja R. Density Functional Theory Study of Hydrogen Adsorption in a Ti‐Decorated Mg‐Based Metal–Organic Framework‐74. ChemPhysChem. 2016; 17(6): 879-884. https://doi.org/10.1002/cphc.201500981
[8] Wang Y, Deng W, Liu X, Wang X. Electrochemical hydrogen storage properties of ball-milled multi-wall carbon nanotubes. International journal of hydrogen energy. 2009;34(3):1437-1443. https://doi.org/10.1016/j.ijhydene.2008.11.085
[9] Allendorf MD, Hulvey Z, Gennett T, Ahmed A, Autrey T, Camp J, Cho ES, Furukawa H, Haranczyk M, Head-Gordon M, Jeong S. An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage. Energy & Environmental Science. 2018; 11(10): 2784-2812. https://doi.org/10.1039/C8EE01085D
[10] Thornton AW, Simon CM, Kim J, Kwon O, Deeg KS, Konstas K, Pas SJ, Hill MR, Winkler DA, Haranczyk M, Smit B. Materials genome in action: identifying the performance limits of physical hydrogen storage. Chemistry of Materials. 2017; 29(7): 2844-2854. https://doi.org/10.1021/acs.chemmater.6b04933
[11] Singh R, Altaee A, Gautam S. Nanomaterials in the advancement of hydrogen energy storage. Heliyon. 2020; 6(7): e04487. https://doi.org/10.1016/j.heliyon.2020.e04487
[12] Liao YT, Matsagar BM, Wu KC. Metal–organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass. ACS Sustainable Chemistry & Engineering. 2018; 6(11): 13628-13643. https://doi.org/10.1021/acssuschemeng.8b03683
[13] Lee CC, Chen CI, Liao YT, Wu KC, Chueh CC. Enhancing efficiency and stability of photovoltaic cells by using perovskite/Zr‐MOF heterojunction including bilayer and hybrid structures. Advanced Science. 2019; 6(5): 1801715. https://doi.org/10.1002/advs.201801715
[14] Chueh CC, Chen CI, Su YA, Konnerth H, Gu YJ, Kung CW, Wu KC. Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. Journal of Materials Chemistry A. 2019; 7(29): 17079-95. https://doi.org/10.1039/C9TA03595H
[15] Konnerth H, Matsagar BM, Chen SS, Prechtl MH, Shieh FK, Wu KC. Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coordination Chemistry Reviews. 2020; 416: 213319. https://doi.org/10.1016/j.ccr.2020.213319
[16] Yu X, Tang Z, Sun D, Ouyang L, Zhu M. Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Progress in Materials Science. 2017; 88: 1-48. https://doi.org/10.1016/j.pmatsci.2017.03.001
[[17] Liao YT, Ishiguro N, Young AP, Tsung CK, Wu KC. Engineering a homogeneous alloy-oxide interface derived from metal-organic frameworks for selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. Applied Catalysis B: Environmental. 2020; 270: 118805. https://doi.org/10.1016/j.apcatb.2020.118805
[18] Iranmanesh M, Akhijahani HS, Jahromi MS. CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system. Renewable Energy. 2020; 145: 1192-1213. https://doi.org/10.1016/j.renene.2019.06.038
[19] Andersson J, Grönkvist S. Large-scale storage of hydrogen. International journal of hydrogen energy. 2019; 44(23):11901-11919. https://doi.org/10.1016/j.ijhydene.2019.03.063
[20] Jahromi MS, Iranmanesh M, Akhijahani HS. Thermo-economic analysis of solar drying of Jerusalem artichoke (Helianthus tuberosus L.) integrated with evacuated tube solar collector and phase change material. Journal of EnergyStorage. 2022;52:104688. https://doi.org/10.1016/j.est.2022.104688
[21] Atashrouz S, Rahmani M. Predicting hydrogen storage capacity of metal–organic frameworks using group method of data handling. Neural Computing and Applications. 2020;32:14851-14864. https://doi.org/10.1007/s00521-020-04837-3
[22] Shet SP, Priya SS, Sudhakar K, Tahir M. A review on current trends in potential use of metal-organic framework for hydrogen storage. International Journal of Hydrogen Energy. 2021; 46(21): 11782-11803. https://doi.org/10.1016/j.ijhydene.2021.01.020
[23] Bakuru VR, DMello ME, Kalidindi SB. Metal‐organic frameworks for hydrogen energy applications: advances and challenges. ChemPhysChem. 2019; 20(10): 1177-1215. https://doi.org/10.1002/cphc.201801147
[24] Balderas‐Xicohténcatl R, Schlichtenmayer M, Hirscher M. Volumetric hydrogen storage capacity in metal–organic frameworks. Energy Technology. 2018; 6(3): 578-582. https://doi.org/10.1002/ente.201700636
[25] Balderas‐Xicohténcatl R, Schmieder P, Denysenko D, Volkmer D, Hirscher M. High volumetric hydrogen storage capacity using interpenetrated metal–organic frameworks. Energy Technology. 2018; 6(3): 510-512. https://doi.org/10.1002/ente.201700608
[26] Railey P, Song Y, Liu T, Li Y. Metal organic frameworks with immobilized nanoparticles: Synthesis and applications in photocatalytic hydrogen generation and energy storage. Materials Research Bulletin. 2017; 96: 385-394. https://doi.org/10.1016/j.materresbull.2017.04.020
[27] Shen L, Liang R, Wu L. Strategies for engineering metal-organic frameworks as efficient photocatalysts. Chinese Journal of Catalysis. 2015; 36(12): 2071-2088. https://doi.org/10.1016/S1872-2067(15)60984-6
[28] Kassaoui ME, Lakhal M, Abdellaoui M, Benyoussef A, El Kenz A, Loulidi M. Modeling hydrogen adsorption in the metal organic framework (MOF-5, connector): Zn4O (C8H4O4)3. International Journal of Hydrogen Energy. 2020; 45(58): 33663-33674. https://doi.org/10.1016/j.ijhydene.2020.03.168
[29] Yu S, Jing G, Li S, Li Z, Ju X. Tuning the hydrogen storage properties of MOF-650: a combined DFT and GCMC simulations study. International Journal of Hydrogen Energy. 2020; 45(11): 6757-6764. https://doi.org/10.1016/j.ijhydene.2019.12.114
[30] Rochat S, Polak-Kraśna K, Tian M, Holyfield LT, Mays TJ, Bowen CR, Burrows AD. Hydrogen storage in polymer-based processable microporous composites. Journal of Materials Chemistry A. 2017; 5(35): 18752-18761. https://doi.org/10.1039/C7TA05232D
[31] Sumida K, Horike S, Kaye SS, Herm ZR, Queen WL, Brown CM, Grandjean F, Long GJ, Dailly A, Long JR. Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal–organic framework (Fe-BTT) discovered via high-throughput methods. Chemical Science. 2010;1(2):184-191. https://doi.org/10.1039/C0SC00179A
[32] Bambalaza SE, Langmi HW, Mokaya R, Musyoka NM, Khotseng LE. Experimental demonstration of dynamic temperature-dependent behavior of UiO-66 metal–organic framework: compaction of hydroxylated and dehydroxylated forms of UiO-66 for high-pressure hydrogen storage. ACS applied materials & interfaces. 2020; 12(22), 24883-24894. https://doi.org/10.1021/acsami.0c06080
[33] Molefe LY, Musyoka NM, Ren J, Langmi HW, Mathe M, Ndungu PG. Polymer-based shaping strategy for zeolite templated carbons (ZTC) and their metal organic framework (MOF) composites for improved hydrogen storage properties. Frontiers in Chemistry. 2019; 7: 864. https://doi.org/10.3389/fchem.2019.00864
[34] Ibarra IA, Yang S, Lin X, Blake AJ, Rizkallah PJ, Nowell H, Allan DR, Champness NR, Hubberstey P, Schröder M. Highly porous and robust scandium-based metal–organic frameworks for hydrogen storage. Chemical Communications. 2011; 47(29): 8304-8306. https://doi.org/10.1039/C1CC11168J
[35] Wang Y, Lan Z, Huang X, Liu H, Guo J. Study on catalytic effect and mechanism of MOF (MOF= ZIF-8, ZIF-67, MOF-74) on hydrogen storage properties of magnesium. International Journal of Hydrogen Energy. 2019; 44(54): 28863-28873. https://doi.org/10.1016/j.ijhydene.2019.09.110
[36] Musyoka NM, Ren J, Langmi HW, North BC, Mathe M, Bessarabov D. Synthesis of rGO/Zr-MOF composite for hydrogen storage application. Journal of Alloys and Compounds. 2017; 724: 450-455. https://doi.org/10.1016/j.jallcom.2017.07.040
[37] Choi HJ, Dincă M, Dailly A, Long JR. Hydrogen storage in water-stable metal–organic frameworks incorporating 1, 3-and 1, 4-benzenedipyrazolate. Energy & Environmental Science. 2010; 3(1): 117-23. https://doi.org/10.1039/B917512A
[38] Ahmed I, Jhung SH. Composites of metal–organic frameworks: preparation and application in adsorption. Materials today. 2014; 17(3): 136-146. https://doi.org/10.1016/j.mattod.2014.03.002
[39] Chen S, Li Y, Mi L. Porous carbon derived from metal organic framework for gas storage and separation: the size effect. Inorganic Chemistry Communications. 2020; 118: 107999. https://doi.org/10.1016/j.inoche.2020.107999
[40] Orcajo G, Montes-Andres H, Villajos JA, Martos C, Botas JA, Calleja G. Li-Crown ether complex inclusion in MOF materials for enhanced H2 volumetric storage capacity at room temperature. international journal of hydrogen energy. 2019; 44(35): 19285-19293. https://doi.org/10.1016/j.ijhydene.2018.03.151
[41] Xia L, Liu Q. Adsorption of H2 on aluminum-based metal-organic frameworks: A computational study. Computational Materials Science. 2017; 126: 176-181. https://doi.org/10.1016/j.commatsci.2016.09.039
[42] Musyoka NM, Rambau KM, Manyala N, Ren J, Langmi HW, Mathe MK. Utilization of waste tyres pyrolysis oil vapour in the synthesis of Zeolite Templated Carbons (ZTCs) for hydrogen storage application. Journal of Environmental Science and Health, Part A. 2018; 53(11):1022-1028. https://doi.org/10.1080/10934529.2018.1471099
[43] Ahmed A, Liu Y, Purewal J, Tran LD, Wong-Foy AG, Veenstra M, Matzger AJ, Siegel DJ. Balancing gravimetric and volumetric hydrogen density in MOFs. Energy & Environmental Science. 2017; 10(11): 2459-2471. https://doi.org/10.1039/C7EE02477K
[44] Grünker R, Bon V, Müller P, Stoeck U, Krause S, Mueller U, Senkovska I, Kaskel S. A new metal–organic framework with ultra-high surface area. Chemical Communications. 2014; 50(26): 3450-3452. https://doi.org/10.1039/C4CC00113C
[45] Yan Y, Da Silva I, Blake AJ, Dailly A, Manuel P, Yang S, Schroder M. High volumetric hydrogen adsorption in a porous anthracene-decorated metal–organic framework. Inorganic Chemistry. 2018; 57(19): 12050-12055. https://doi.org/10.1021/acs.inorgchem.8b01607
[46] Morassaei MS, Salehabadi A, Salavati-Niasari M, Akbari A. Preparation, structural analysis, and assessing the impacts of holmium and ytterbium on electrochemical hydrogen storage property of strontium cerium molybdate nanostructures. Electrochimica Acta. 2020; 356: 136851. https://doi.org/10.1016/j.electacta.2020.136851
[47] Yang Z, Xiong W, Wang J, Zhu Y, Xia Y. A Systematic Study on the Preparation and Hydrogen Storage of Zeolite 13X‐Templated Microporous Carbons. European Journal of Inorganic Chemistry. 2016; 2016(13‐14): 2152-2158. https://doi.org/10.1002/ejic.201501180
[48] Sreedhar I, Kamani KM, Kamani BM, Reddy BM, Venugopal A. A Bird's Eye view on process and engineering aspects of hydrogen storage. Renewable and Sustainable Energy Reviews. 2018 ; 91: 838-860. https://doi.org/10.1016/j.rser.2018.04.028
[49] Gómez-Gualdrón DA, Colón YJ, Zhang X, Wang TC, Chen YS, Hupp JT, Yildirim T, Farha OK, Zhang J, Snurr RQ. Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage. Energy & Environmental Science. 2016; 9(10): 3279-3289. https://doi.org/10.1039/C6EE02104B
[50] Gadipelli S, Ford J, Zhou W, Wu H, Udovic TJ, Yildirim T. Nanoconfinement and Catalytic Dehydrogenation of Ammonia Borane by Magnesium‐Metal–Organic‐Framework‐74. Chemistry–A European Journal. 2011 ; 17(22): 6043-6047. https://doi.org/10.1002/chem.201100090
[51] Lim DW, Yoon JW, Ryu KY, Suh MP. Magnesium nanocrystals embedded in a metal–organic framework: Hybrid hydrogen storage with synergistic effect on physi‐and chemisorption. Angewandte Chemie International Edition. 2012; 51(39): 9814-9817.
[52] Zhou H, Zhang J, Zhang J, Yan XF, Shen XP, Yuan AH. Spillover enhanced hydrogen storage in Pt-doped MOF/graphene oxide composite produced via an impregnation method. Inorganic Chemistry Communications. 2015;54:54-56. https://doi.org/10.1016/j.inoche.2015.02.001
[53] Guo JH, Li SJ, Su Y, Chen G. Theoretical study of hydrogen storage by spillover on porous carbon materials. International Journal of Hydrogen Energy. 2020; 45(48): 25900-25911.
[54] Ensafi AA, Jafari-Asl M, Nabiyan A, Rezaei B, Dinari M. Hydrogen storage in hybrid of layered double hydroxides/reduced graphene oxide using spillover mechanism. Energy. 2016; 99: 103-114. https://doi.org/10.1016/j.energy.2016.01.042
[55] Barghi Jahromi MS, Kalantar V, Sefid M, Iranmanesh M, Samimi Akhijahani H. Experimental study of phase change process of the paraffin as a PCM with copper foam and iron wool. Journal of Renewable Energy and Environment. 2023. 10.30501/jree.2023.365995.1483
[56] Bon V, Senkovska I, Kaskel S. Metal-organic frameworks. Nanoporous Materials for Gas Storage. 2019: 137-72. https://doi.org/10.1007/978-981-13-3504-4_6
[57] Rocío-Bautista P, Taima-Mancera I, Pasán J, Pino V. Metal-organic frameworks in green analytical chemistry. Separations. 2019; 6(3): 33. https://doi.org/10.3390/separations6030033
[58] Butova VV, Soldatov MA, Guda AA, Lomachenko KA, Lamberti C. Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russian Chemical Reviews. 2016; 85(3): 280. doi: 10.1070/RCR4554
[59] Broom DP, Webb CJ, Fanourgakis GS, Froudakis GE, Trikalitis PN, Hirscher M. Concepts for improving hydrogen storage in nanoporous materials. International journal of hydrogen energy. 2019; 44(15): 7768-7779. https://doi.org/10.1016/j.ijhydene.2019.01.224
[60] Kumar S, Kumar TD. Hydrogen trapping potential of Ca decorated metal-graphyne framework. Energy. 2020; 199: 117453. https://doi.org/10.1016/j.energy.2020.117453
[61] Ma LJ, Wang J, Han M, Jia J, Wu HS, Zhang X. Adsorption of multiple H2 molecules on the complex TiC6H6: An unusual combination of chemisorption and physisorption. Energy. 2019; 171: 315-325. https://doi.org/10.1016/j.energy.2019.01.018
[62] Abdellaoui M, Lakhal M, Benzidi H, Garara M, Benyoussef A, El Kenz A, Mounkachi O, Loulidi M, Ez-Zahraouy H. Enhancing of hydrogen storage properties of perovskite-type MgNiH 3 by introducing cobalt dopant (MgCo x Ni 1− x H 3) using first-principle calculations. Applied Physics A. 2019; 125(11): 1-8. https://doi.org/10.1007/s00339-019-3052-4
[63] Boateng E, Chen A. Recent advances in nanomaterial-based solid-state hydrogen storage. Materials Today Advances. 2020; 6: 100022. https://doi.org/10.1016/j.mtadv.2019.100022
[64] Moradi R, Groth KM. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. International Journal of Hydrogen Energy. 2019; 44(23): 12254-12269. https://doi.org/10.1016/j.ijhydene.2019.03.041
[65] Lototskyy M, Yartys VA. Comparative analysis of the efficiencies of hydrogen storage systems utilising solid state H storage materials. Journal of Alloys and Compounds. 2015; 645: S365-S373. https://doi.org/10.1016/j.jallcom.2014.12.107
[66] Liu J, Zou R, Zhao Y. Recent developments in porous materials for H2 and CH4 storage. Tetrahedron Letters. 2016; 57(44): 4873-4881. https://doi.org/10.1016/j.tetlet.2016.09.085
[67] Akhijahani HS, Salami P, Iranmanesh M, Jahromi MS. Experimental study on the solar drying of Rhubarb (Rheum ribes L.) with parabolic trough collector assisted with air recycling system, nanofluid and energy storage system. Journal of Energy Storage. 2023; 60: 106451. https://doi.org/10.1016/j.est.2022.106451
[68] Bucior BJ, Bobbitt NS, Islamoglu T, Goswami S, Gopalan A, Yildirim T, Farha OK, Bagheri N, Snurr RQ. Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks. Molecular Systems Design & Engineering. 2019; 4(1): 162-174. https://doi.org/10.1039/C8ME00050F
[69] Petitpas G, Bénard P, Klebanoff LE, Xiao J, Aceves S. A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods. International journal of hydrogen energy. 2014; 39(20): 10564-10584. https://doi.org/10.1016/j.ijhydene.2014.04.200
[70] Aceves SM, Espinosa-Loza F, Ledesma-Orozco E, Ross TO, Weisberg AH, Brunner TC, Kircher O. High-density automotive hydrogen storage with cryogenic capable pressure vessels. International Journal of Hydrogen Energy. 2010; 35(3): 1219-1226. https://doi.org/10.1016/j.ijhydene.2009.11.069
[71] Wang L, Chen X, Du H, Yuan Y, Qu H, Zou M. First-principles investigation on hydrogen storage performance of Li, Na and K decorated borophene. Applied Surface Science. 2018; 427: 1030-1037. https://doi.org/10.1016/j.apsusc.2017.08.126
[72] Yuan L, Chen Y, Kang L, Zhang C, Wang D, Wang C, Zhang M, Wu X. First-principles investigation of hydrogen storage capacity of Y-decorated porous graphene. Applied Surface Science. 2017; 399: 463-468. https://doi.org/10.1016/j.apsusc.2016.12.054
[73] Yu S, Li S, Meng X, Wan C, Ju X. Tuning the hydrogen adsorption properties of Zn–based metal–organic frameworks: Combined DFT and GCMC simulations. Journal of Solid State Chemistry. 2018; 266: 31-36. https://doi.org/10.1016/j.jssc.2018.04.033
[74] Dong X, Liu X, Chen Y, Zhang M. Screening of bimetallic M-Cu-BTC MOFs for CO2 activation and mechanistic study of CO2 hydrogenation to formic acid: a DFT study. Journal of CO2 Utilization. 2018; 24: 64-72. https://doi.org/10.1016/j.jcou.2017.11.014
[75] Hao P, Shi Y, Li S, Zhu X, Cai N. Adsorbent characteristic regulation and performance optimization for pressure swing adsorption via temperature elevation. Energy & Fuels. 2018; 33(3): 1767-1773. https://doi.org/10.1021/acs.energyfuels.8b02829
[76] Kaur G, Rai RK, Tyagi D, Yao X, Li PZ, Yang XC, Zhao Y, Xu Q, Singh SK. Room-temperature synthesis of bimetallic Co–Zn based zeolitic imidazolate frameworks in water for enhanced CO2 and H2 uptakes. Journal of Materials Chemistry A. 2016; 4(39): 14932-14938. https://doi.org/10.1039/C6TA04342A
[77] Kapelewski MT, Runčevski T, Tarver JD, Jiang HZ, Hurst KE, Parilla PA, Ayala A, Gennett T, FitzGerald SA, Brown CM, Long JR. Record high hydrogen storage capacity in the metal–organic framework Ni2 (m-dobdc) at near-ambient temperatures. Chemistry of materials. 2018; 30(22): 8179-8189. https://doi.org/10.1021/acs.chemmater.8b03276
[78] Ma LJ, Wang J, Han M, Jia J, Wu HS, Zhang X. Adsorption of multiple H2 molecules on the complex TiC6H6: An unusual combination of chemisorption and physisorption. Energy. 2019; 171:315-325. https://doi.org/10.1016/j.energy.2019.01.018
[79] Jahromi MS, Kalantar V, Sefid M, Akhijahani HS, Iranmanesh M. Energy and exergy analysis of an unglazed transpired collector connected to a dryer with a porous plate and phase change material. Journal of Energy Storage. 2023;60:106693. https://doi.org/10.1016/j.est.2023.106693
[80] Jahromi MS, Kalantar V, Akhijahani HS, Kargarsharifabad H, Shoeibi S. Performance analysis of a new solar air ventilator with phase change material: Numerical simulation, techno-economic and environmental analysis. Journal of Energy Storage. 2023; 62: 106961. https://doi.org/10.1016/j.est.2023.106961