کاربردها و چالش‌های زیست مولکول‌های طبیعی به‌عنوان نانوساختارهای دارورسان در درمان سرطان

نوع مقاله : مروری

نویسندگان

گروه زیست‌شناسی سلولی-مولکولی، دانشکده علوم و فناوری زیستی، دانشگاه شهید بهشتی، تهران، ایران

چکیده

امروزه نانوساختارها به دلیل ویژگی‌های بی‌نظیر اهمیت زیادی در رویکرد‌های درمانی بیماری‌ سرطان پیدا کرده‌اند. هدف از این مقاله، مروری بر نانوساختارهای مشتق‌شده از مولکول‌های زیستی است؛ چراکه درک کامل از اجزای سازنده این نانوساختارها در طراحی، مهندسی و ارزیابی عملکرد آن‌ها در بدن انسان موثر خواهد کرد. بدین منظور، دو چالش‌ کلیدی نانوپزشکی سرطان را که شامل 1- طراحی نانوساختارها براساس ویژگی‌های متمایز تومور از طریق جفت کردن روش‌های هدفمند درمان تومور با رویکرد‌هایی که ریز محیط تومور (TME) را به صورت دقیق مورد هدف قرار دهند و 2- تعیین الگوی توزیع زیستی داروها از طریق یکی کردن روش‌های هدفمند درمان تومور با رویکرد‌هایی که مسیرهای تجویزی برای سرطان‌های خاص را مورد هدف قرار دهند، بررسی می‌گردد و چگونگی رفع این چالش‌ها با استفاده از نانوساختارهای مشتق‌شده از مولکول‌های زیستی شرح داده می‌شود. درنهایت، موانعی که لازم است جهت بهره‌برداری بالینی بر آن‌ها غلبه گردد، شناسایی و مورد بحث واقع می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Applications and Challenges of Natural Biomolecules as Drug Delivery Nanostructures in Cancer Treatment

نویسندگان [English]

  • Negar Asghari Hosori
  • Seyed Mohsen Dehnavi
Cellular-Molecular Biology Group, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Nowadays, nanostructures have become very important in cancer treatment approaches due to their unique properties. This review aims to investigate nanostructures derived from biomolecules, as a complete understanding of the nanostructure's components helps to design, engineer, and evaluate their performance in the human body. Two key challenges of cancer nanomedicine are 1- designing nanostructures based on the distinct characteristics of tumors by coupling targeted tumor therapies with approaches that precisely target the tumor microenvironment (TME) and 2- determining the biodistribution pattern of drugs by unifying the targeted tumor treatment approaches with related approaches to prescription pathways for specific cancers. These challenges will be reviewed and the ways to deal with them using nanostructures derived from biomolecules will be explained. Finally, barriers that need to be overcome to enable clinical exploitation will be identified. It is hoped that this article will provide valuable information to researchers who are interested in novel methods of cancer treatment.

کلیدواژه‌ها [English]

  • drug delivery nanostructures
  • cancer treatment
  • natural biomolecules
  • multifunctional nanostructures
  • tumor microenvironment
 
[1]           Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. Nature Reviews Materials. 2021;6(9):766-83.
[2]           Sharma R, Agrawal U, Mody N, Dubey S, Vyas SP. Engineered nanoparticles as a precise delivery system in cancer therapeutics.  Engineering of Nanobiomaterials: Elsevier; 2016. p. 397-427.
[3]           Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA. Nanotechnology-based approaches in anticancer research. International journal of nanomedicine. 2012:4391-408.
[4]           Magro M, Venerando A, Macone A, Canettieri G, Agostinelli E, Vianello F. Nanotechnology-based strategies to develop new anticancer therapies. Biomolecules. 2020;10(5):735.
[5]           Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Frontiers in molecular biosciences. 2020;7:193.
[6]           Rasool M, Malik A, Waquar S, Arooj M, Zahid S, Asif M, et al. New challenges in the use of nanomedicine in cancer therapy. Bioengineered. 2022;13(1):759-73.
[7]           Datta LP, Manchineella S, Govindaraju T. Biomolecules-derived biomaterials. Biomaterials. 2020;230:119633.
[8]           Liu K, Jiang X, Hunziker P. Carbohydrate-based amphiphilic nano delivery systems for cancer therapy. Nanoscale. 2016;8(36):16091-156.
[9]           Seeman NC, Sleiman HF. DNA nanotechnology. Nature Reviews Materials. 2017;3(1):1-23.
[10]         Kakkar A, Traverso G, Farokhzad OC, Weissleder R, Langer R. Evolution of macromolecular complexity in drug delivery systems. Nature Reviews Chemistry. 2017;1(8):0063.
[11]         Habibi N, Kamaly N, Memic A, Shafiee H. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano today. 2016;11(1):41-60.
[12]         Lammers T, Kiessling F, Ashford M, Hennink W, Crommelin D, Storm G. Cancer nanomedicine: is targeting our target? Nature Reviews Materials. 2016;1(9):1-2.
[13]         Xie X, Zhang Y, Li F, Lv T, Li Z, Chen H, et al. Challenges and opportunities from basic cancer biology for nanomedicine for targeted drug delivery. Current cancer drug targets. 2019;19(4):257-76.
[14]         Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharmaceutical research. 2016;33:2373-87.
[15]         Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update. Bioengineering & translational medicine. 2019;4(3):e10143.
[16]         Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. cell. 2011;144(5):646-74.
[17]         Han X, Li Y, Xu Y, Zhao X, Zhang Y, Yang X, et al. Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem. Nature communications. 2018;9(1):3390.
[18]         Valkenburg KC, De Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nature reviews Clinical oncology. 2018;15(6):366-81.
[19]         Ji T, Zhao Y, Ding Y, Wang J, Zhao R, Lang J, et al. Transformable peptide nanocarriers for expeditious drug release and effective cancer therapy via cancer‐associated fibroblast activation. Angewandte Chemie International Edition. 2016;55(3):1050-5.
[20]         Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nature materials. 2009;8(7):543-57.
[21]         Cai R, Chen C. The crown and the scepter: roles of the protein corona in nanomedicine. Advanced Materials. 2019;31(45):1805740.
[22]         Banerjee I, Pangule RC, Kane RS. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced materials. 2011;23(6):690-718.
[23]         Chelmowski R, Köster SD, Kerstan A, Prekelt A, Grunwald C, Winkler T, et al. Peptide-based SAMs that resist the adsorption of proteins. Journal of the American Chemical Society. 2008;130(45):14952-3.
[24]         Owens III DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International journal of pharmaceutics. 2006;307(1):93-102.
[25]         Hu C-MJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences. 2011;108(27):10980-5.
[26]         Guo Y, Wang D, Song Q, Wu T, Zhuang X, Bao Y, et al. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS nano. 2015;9(7):6918-33.
[27]         Xu J, Zhang Y, Xu J, Wang M, Liu G, Wang J, et al. Reversing tumor stemness via orally targeted nanoparticles achieves efficient colon cancer treatment. Biomaterials. 2019;216:119247.
[28]         Donnem T, Reynolds AR, Kuczynski EA, Gatter K, Vermeulen PB, Kerbel RS, et al. Non-angiogenic tumours and their influence on cancer biology. Nature Reviews Cancer. 2018;18(5):323-36.
[29]         Li S, Zhang Y, Wang J, Zhao Y, Ji T, Zhao X, et al. Nanoparticle-mediated local depletion of tumour-associated platelets disrupts vascular barriers and augments drug accumulation in tumours. Nature Biomedical Engineering. 2017;1(8):667-79.
[30]         Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nature Reviews Cancer. 2005;5(6):423-35.
[31]         Goel HL, Mercurio AM. VEGF targets the tumour cell. Nature Reviews Cancer. 2013;13(12):871-82.
[32]         Shields IV CW, Evans MA, Wang LL-W, Baugh N, Iyer S, Wu D, et al. Cellular backpacks for macrophage immunotherapy. Science Advances. 2020;6(18):eaaz6579.
[33]         Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Advanced drug delivery reviews. 2017;114:206-21.
[34]         Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nature immunology. 2016;17(9):1025-36.
[35]         Ma Q, Dieterich LC, Detmar M. Multiple roles of lymphatic vessels in tumor progression. Current opinion in immunology. 2018;53:7-12.
[36]         Garnier L, Gkountidi A-O, Hugues S. Tumor-associated lymphatic vessel features and immunomodulatory functions. Frontiers in immunology. 2019;10:720.
[37]         Cheng CJ, Tietjen GT, Saucier-Sawyer JK, Saltzman WM. A holistic approach to targeting disease with polymeric nanoparticles. Nature reviews Drug discovery. 2015;14(4):239-47.
[38]         Yang Y, Sunoqrot S, Stowell C, Ji J, Lee C-W, Kim JW, et al. Effect of size, surface charge, and hydrophobicity of poly (amidoamine) dendrimers on their skin penetration. Biomacromolecules. 2012;13(7):2154-62.
[39]         De Matteis V. Exposure to inorganic nanoparticles: routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics. 2017;5(4):29.
[40]         Thambi T, Phan VG, Lee DS. Stimuli‐sensitive injectable hydrogels based on polysaccharides and their biomedical applications. Macromolecular rapid communications. 2016;37(23):1881-96.
[41]         Schmidt KT, Peer CJ, Huitema AD, Williams MD, Wroblewski S, Schellens JH, et al. Measurement of NLG207 (formerly CRLX101) nanoparticle-bound and released camptothecin in human plasma. Journal of pharmaceutical and biomedical analysis. 2020;181:113073.
[42]         Swierczewska M, Han HS, Kim K, Park J, Lee S. Polysaccharide-based nanoparticles for theranostic nanomedicine. Advanced drug delivery reviews. 2016;99:70-84.
[43]         Han HS, Thambi T, Choi KY, Son S, Ko H, Lee MC, et al. Bioreducible shell-cross-linked hyaluronic acid nanoparticles for tumor-targeted drug delivery. Biomacromolecules. 2015;16(2):447-56.
[44]         Lallana E, Rios de la Rosa JM, Tirella A, Pelliccia M, Gennari A, Stratford IJ, et al. Chitosan/hyaluronic acid nanoparticles: rational design revisited for RNA delivery. Molecular pharmaceutics. 2017;14(7):2422-36.
[45]         Choi KY, Silvestre OF, Huang X, Min KH, Howard GP, Hida N, et al. Versatile RNA interference nanoplatform for systemic delivery of RNAs. ACS nano. 2014;8(5):4559-70.
[46]         Ween MP, Oehler MK, Ricciardelli C. Role of versican, hyaluronan and CD44 in ovarian cancer metastasis. International journal of molecular sciences. 2011;12(2):1009-29.
[47]         Jani MS, Veetil AT, Krishnan Y. Precision immunomodulation with synthetic nucleic acid technologies. Nature Reviews Materials. 2019;4(6):451-8.
[48]         Zhu L, Zhao J, Guo Z, Liu Y, Chen H, Chen Z, et al. Applications of aptamer-bound nanomaterials in cancer therapy. Biosensors. 2021;11(9):344.
[49]         Wu X, Chen J, Wu M, Zhao JX. Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics. 2015;5(4):322.
[50]         De Santis E, Ryadnov MG. Peptide self-assembly for nanomaterials: the old new kid on the block. Chemical Society Reviews. 2015;44(22):8288-300.
[51]         Sinha NJ, Langenstein MG, Pochan DJ, Kloxin CJ, Saven JG. Peptide design and self-assembly into targeted nanostructure and functional materials. Chemical Reviews. 2021;121(22):13915-35.
[52]         Gatto E, Toniolo C, Venanzi M. Peptide self-assembled nanostructures: From models to therapeutic peptides. Nanomaterials. 2022;12(3):466.
[53]         Li J, Shi K, Sabet ZF, Fu W, Zhou H, Xu S, et al. New power of self-assembling carbonic anhydrase inhibitor: Short peptide–constructed nanofibers inspire hypoxic cancer therapy. Science Advances. 2019;5(9):eaax0937.
[54]         Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nature biomedical engineering. 2021;5(9):951-67.
[55]         Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics. 2016;6(9):1306.
[56]         Wang X, Li C, Wang Y, Chen H, Zhang X, Luo C, et al. Smart drug delivery systems for precise cancer therapy. Acta Pharmaceutica Sinica B. 2022.
[57]         Rana A, Adhikary M, Singh PK, Das BC, Bhatnagar S. “Smart” drug delivery: A window to future of translational medicine. Frontiers in Chemistry. 2023;10:1095598.
[58]         He J, Fan K, Yan X. Ferritin drug carrier (FDC) for tumor targeting therapy. Journal of Controlled Release. 2019;311:288-300.
[59]         Jiang B, Fang L, Wu K, Yan X, Fan K. Ferritins as natural and artificial nanozymes for theranostics. Theranostics. 2020;10(2):687.