مروری بر سنتز و کاربردهای نانو ساختارهای متخلخل چارچوب های آلی-فلزی

نوع مقاله : مروری

نویسندگان

1 گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه ارومیه، ارومیه، ایران

2 گروه مهندسی پلیمر، دانشکده فنی و مهندسی، دانشگاه ارومیه، ارومیه، ایران

چکیده

یون‌های فلزی یا خوشه‌های مرتبط با پیوندهای آلی برای ایجاد نانوساختارهای یک بعدی، چارچوب‌های آلی- فلزی (MOFs) نامیده می‌شوند. سنتز شبکه ای، MOFهایی را با اجزای مشخص شده تشکیل می دهد که می تواند منجر به تشکیل بلورهایی با تخلخل بالا، پایداری شیمیایی و حرارتی زیاد شود. با توجه به مساحت سطح ویژه وسیع تر، اندازه منافذ بزرگ، ماهیت بلوری و قابل تنظیم، MOF های متعددی به عنوان گزینه های بالقوه در زمینه های مختلفی مانند ذخیره سازی و تحویل گاز، ذخیره انرژی، کاتالیزور و سنجش شیمیایی/زیستی استفاده شده اند. این مقاله، مروری بر طبقه بندی MOFها، روش های سنتز MOFها، پارامترهای تاثیرگذار بر سنتز و کاربردهای آنها را ارائه می دهد. انواع مختلف چارچوب های آلی – فلزی مانند چارچوب های ایزوشبکه ای، چارچوب های زئولیتی ایمیدازولات، شبکه های هماهنگی متخلخل و موسسه مواد Lavoisier بررسی می شوند. روش های مختلف سنتز MOF ها شامل سنتز مایکروویو، الکتروشیمیایی، حلال گرمایی، مکانیکی-شیمیایی و سونوشیمیایی و پارامترهای موثر بر سنتز شامل انتخاب لیگاندهای آلی، نمک فلز، نسبت مولی پیش سازها، pH، حلال و دما می باشد. تحقیقات در زمینه MOFs هم در دانشگاه و هم در صنعت به سرعت در حال گسترش است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A review on the synthesis and applications of porous nanostructures of metal-organic frameworks

نویسندگان [English]

  • Amin Alamdari 1
  • Mohsen Sadroddini 2
1 Department of Chemical Engineering, Urmia University, Urmia, Iran
2 Polymer Department, Urmia University, Urmia, Iran
چکیده [English]

Metal ions or clusters associated with organic bonds to create one-dimensional nanostructures are called metal-organic frameworks (MOFs). Network synthesis forms MOFs with defined components, which can lead to the formation of crystals with high porosity, and high chemical and thermal stability. Due to their larger specific surface area, large pore size, and crystalline and tunable nature, several MOFs have been used as potential options in various fields such as gas storage and delivery, energy storage, catalysis, and chemical/biosensing. This article provides an overview of MOF classification, MOF synthesis methods, parameters affecting synthesis, and their applications. Various types of organometallic frameworks such as isolattice frameworks, zeolitic imidazolate frameworks, porous coordination networks, and Lavoisier materials are reviewed. Various methods of MOF synthesis include microwave, electrochemical, solvothermal, mechanical-chemical, and sonochemical synthesis and the parameters affecting the synthesis include the selection of organic ligands, metal salt, molar ratio of precursors, pH, solvent, and temperature. Research in the field of MOFs is expanding rapidly both in academia and industry.

کلیدواژه‌ها [English]

  • metal-organic framework
  • metal ion
  • organic ligand
  • synthesis
  • applications
[1] Zhou H C, Long JR, Yaghi OM, Introduction to metalorganic frameworks. Chem. Rev. 2012; 112: 673−674. DOI:10.1021/cr300014x
[2] Sharmin E, Zafar F, Introductory Chapter: metal-organic frameworks (MOFs). Metal-organic frameworks; InTech. 2016;  1−16; DOI: 10.5772/64797.
[3] Butova VVE, Soldatov M A, Guda A A, Lomachenko KA, Lamberti C, Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russ. Chem. Rev. 2016; 85: 280. DOI:10.1070/RCR4554.
[4] Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM, The chemistry and applications of metal-organic frameworks. Sci. 2013; 341: 1230444. DOI: 10.1126/science.1230444.
[5] Lu W, Wei Z, Gu ZY, Liu TF, Park J, Park J, Tian J, Zhang M, Zhang Q, Gentle T, Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 2014; 43: 5561−5593.DOI:https://doi.org/10.1039/C4CS00003J.
[6] Carrasco S, Biosensors. Metal-Organic Frameworks for the Development of Biosensors: A Current Overview. 2018; 8: 92. https://doi.org/10.3390/bios8040092.
[7] Almeida Paz FA, Klinowski J, Vilela S MF, Tome JPC, Cavaleiro JAS, Rocha J, Ligand design for functional metal−organic frameworks. Chem. Soc. Rev. 2012; 41: 1088−1110.https://doi.org/10.1039/C1CS15055C.
 
[8] Yusuf VF, Malek NI, Kailasa SK, Review on Metal-Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS Omega. 2022; 7: 44507–44531. doi: 10.1021/acsomega.2c05310.
[9] Tong P, Liang J, Jiang X, Li J, Research progress on metalorganic framework composites in chemical sensors. Crit. Rev. Anal. Chem. 2020; 50: 376−392. doi: 10.1080/10408347.2019.1642732.
[10] Zhu M, Wu X, Niu B, Guo H, Zhang Y, Fluorescence sensing of 2, 4, 6-trinitrophenol based on hierarchical IRMOF-3 nanosheets fabricated through a simple one-pot reaction. Appl. Organomet. Chem. 2018; 32: (5), No. e4333. https://doi.org/10.1002/aoc.4333.
[11] Wang Y, Yan J, Wen N, Xiong H, Cai S, He Q, Hu Y, Peng D, Liu Z, Liu Y, Metal-organic frameworks for stimuliresponsive drug delivery. Biomaterials. 2020; 230: 119619.
[12] Pan Y, Zhan S, Xia F, Zeolitic imidazolate framework-based biosensor for detection of HIV-1 DNA. Anal. Biochem. 2018; 546: 5−9.
[13] Ling P, Lei J, Ju H, Porphyrinic metal-organic framework as electrochemical probe for DNA sensing via triple-helix molecular switch. Biosens. Bioelectron. 2015; 71: 373−379.
[14] Zhang J, Sun L, Chen C, Liu M, Dong W, Guo W, Ruan S, High performance humidity sensor based on metal organic framework MIL-101 (Cr) nanoparticles. J. Alloys. Compd. 2017; 695: 520−525.
[15] Liu H, Ni T, Mu L, Zhang D, Wang J, Wang S, Sun B, Sensitive detection of pyrraline with a molecularly imprinted sensor based on metal-organic frameworks and quantum dots. Sens. Actuators B Chem. 2018; 256: 1038−1044.
[16] Safaei M, Foroughi MM, Ebrahimpoor N, Jahani S, Omidi A, Khatami M, A review on metal-organic frameworks: Synthesis and applications. Trends Analyt. Chem. 2019; 118: 401−425. DOI:10.1016/j.trac.2019.06.007.
[17] Soni S, Bajpai PK, Arora C, A review on metal-organic framework: Synthesis, properties and ap-plication. Characterization and Application of Nanomaterials. 2020; 3: 87−106. DOI: https://doi.org/10.24294/can.v3i2.551.
[18] Couzon N, Ferreira M, Duval S, El-Achari A, Campagne C, Loiseau T, Volkringer C, Microwave-Assisted Synthesis of Porous Composites MOF–Textile for the Protection against Chemical and Nuclear Hazards ACS Appl. Mater. Interfaces. 2022; 14: 21497–21508. https://doi.org/10.1021/acsami.2c03247.
[19] Rehman A, Farrukh S, Hussain A, Pervaiz E, Synthesis and effect of metal−organic frame works on CO2 adsorption capacity at various pressures: a contemplating review. Energy Environ. 2020; 31: 367−388. https://doi.org/10.1177/0958305X19865352.
[20] Klinowski J, Almeida Paz FA,   Patrícia Silva, João Rocha,  Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transaction. 2011; 40: 321-330. https://doi.org/10.1039/C0DT00708K.
 [21] Stock N, Biswas S, Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012; 112: 933−969.https://doi.org/10.1021/cr200304e
[22] Liu H, Zhao Y, Zhou C, Mu B, Chen L, Microwave-assisted synthesis of Zr-based metal–organic framework (Zr-fum-fcu-MOF) for gas adsorption separation. Chemical Physics Letters. 2021; 780: 138906. https://doi.org/10.1016/j.cplett.2021.138906.
[23] Zhang L, Liand F, Luo L, Preparation methods of metal organic frameworks and their capture of CO2. IOP Conf. Ser.: Earth Environ. Sci. 2018; 108: 042104. DOI:10.1088/1755-1315/108/4/042104.
[24] Lee YR, Kim J, Ahn WS, Synthesis of metal-organic frameworks: A mini review. Korean J. Chem. Eng. 2013; 30: 1667− 1680. DOI: 10.1007/s11814-013-0140-6.
[25] Huang CW, Nguyen VH, Zhou SR, Hsu SY, Tan JX, Wu KCW, Metal−organic frameworks: preparation and applications in highly efficient heterogeneous photocatalysis. Sustain. Energy Fuels. 2020; 4: 504−521. https://doi.org/10.1039/C9SE00972H.
[26] Bedia J, Muelas-Ramos V, Peñas Garzon M, Gomez-Aviles A, Rodriguez JJ, Belver C, A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification. Catalysts. 2019; 9: 52. https://doi.org/10.3390/catal9010052.
[27] Walton RI, Subcritical solvothermal synthesis of condensed inorganic materials. Chem. Soc. Rev. 2002; 31: 230−238. https://doi.org/10.1039/B105762F.
[28] Ansari A, Siddiqui VU, Khan I, Akram MK, Siddiqi WA, Khan A, Asiri AM, Materials Research Foundations. 2019; 53: 1-28. DOI:10.1016/B978-0-12-819977-0.00004-4
[29] Pichon A, Lazuen-Garay A, James SL, Solvent-free synthesis of a microporous metal−organic framework. CrystEngComm. 2006; 8: 211−214. https://doi.org/10.1039/B513750K.
[30] Y. Li, R.T. Yang,  Langmuir, 23, 12937−12944, (2007).
[31] Qiu LG, Li ZQ, Wu Y, Wang W, Xu T, Jiang X, Facile synthesis of nanocrystals of a microporous metal−organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun. 2008; 31: 3642−3644. https://doi.org/10.1039/B804126A.
[32] Sahoo S, Kumar R, Dhaka G, Shim J, Recent advances in synthesis of metal organic frameworks (MOFs)-derived metal oxides and its composites for electrochemical energy storage applications. Journal of Energy Storage. 2023; 74: 109427. DOI:10.1016/j.est.2023.109427.
[33] Carne-Sanchez A, Imaz I, Cano-Sarabia M, Maspoch DA, spray-drying strategy for synthesis of nanoscale metal−organic frameworks and their assembly into hollow superstructures. Nat. Chem. 2013; 5: 203−211. DOI: 10.1038/nchem.1569.
[34] Parnham ER, Morris RE, Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic-organic hybrids. Acc. Chem. Res. 2007; 40: 1005−1013. https://doi.org/10.1021/ar700025k.
[35] Demessence A, Boissière C, Grosso D, Horcajada P, Serre C, Ferey G, Soler-Illia GJ, Sanchez C, Adsorption properties in high optical quality nano ZIF-8 thin films with tunable thickness. J. Mater. Chem., 2010; 20: 7676−7681. https://doi.org/10.1039/C0JM00500B.
[36] Boldyrev VV, Tkačova K, Solvent-free synthesis of a microporous metal–organic framework. J. mater.synthe.process., 2000; 8: 121−132, DOI                https://doi.org/10.1039/B513750K.
[37] Shen K, Zhang M, Zheng H, Critical factors influencing the structures and properties of metal-organic frameworks. CrystEng- Comm. 2015; 17: 981−991. https://doi.org/10.1039/C4CE02150A.
[38] Pan Z, Zheng H, Wang T, Song Y, Li Y, Guo Z, Batten, S. R. Hydrothermal synthesis, structures, and physical properties of four new flexible multicarboxylate ligands-based compounds. Inorg. Chem. 2008; 47: 9528−9536. doi: 10.1021/ic801221r. Epub 2008 Sep 24.
[39] Zhang C, Zhang M, Qin L, Zheng H, Crystal structures and spectroscopic properties of metal-organic frameworks based on rigid ligands with flexible functional groups. Cryst. Growth Des. 2014; 14: 491−499. https://doi.org/10.1021/cg401149h
[40] Tao CA, Wan JF, Synthesis of Metal Organic Frameworks by Ball-Milling. Crystals. 2021; 11: 15. https://doi.org/10.3390/cryst11010015.
[41] Schlesinger M, Schulze S, Hietschold M, Mehring M, Evaluation of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [Cu2(btc)3 (H2O)3] and [Cu2 (btc)(OH)(H2O)]. Microporous Mesoporous Mater. 2010; 132: 121−127. https://doi.org/10.1016/j.micromeso.2010.02.008.
[42] Liu PP, Cheng AL, Yue Q, Liu N, Sun WW, Gao EQ, Cobalt (II) coordination networks dependent upon the spacer length of flexible bis (tetrazole) ligands. Cryst. Growth Des. 2008; 8: 1668−1674. DOI:10.1021/cg701167e.
[43] Volkringer C, Loiseau T, Guillou N, Ferey G, Haouas M, Taulelle F, Elkaim E, Stock N, High-throughput aided synthesis of the porous metal− organic framework-type aluminum pyromellitate, MIL-121, with extra carboxylic acid functionalization. Inorg. Chem. 2010; 49: 9852−9862. DOI: 10.1021/ic101128w.
[44] Luo L, Lv GC, Wang P, Liu Q, Chen K, Sun WY, pH-Dependent cobalt (ii) frameworks with mixed 3, 3′, 5, 5′ tetra (1 H-imidazol-1-yl)-1, 1′-biphenyl and 1, 3, 5-benzenetricarboxylate ligands: synthesis, structure and sorption property. CrystEngComm. 2013; 15:9537−9543. https://doi.org/10.1039/C3CE41056K.
[45] Akhbari K, Morsali A, Effect of the guest solvent molecules on preparation of different morphologies of ZnO nanomaterials from the [Zn2 (1, 4-bdc)2 (dabco)] metal-organic framework. J. Coord. Chem. 2011; 64: 3521−3530. DOI:10.1080/00958972.2011.623778.
[46] Bernini MC, Brusau EV, Narda GE, Echeverria GE, Pozzi CG, Punte G, Lehmann CW, The Effect of Hydrothermal and Non-Hydrothermal Synthesis on the Formation of Holmium (III) Succinate Hydrate Frameworks. Eur.J. Inorg,Chem. 2007; 2007: 684−693. DOI: 10.1002/ejic.200600860.
[47] Alamdari A, Performance assessment of packed bed reactor and catalytic membrane reactor for steam reforming of methane through metal foam catalyst support. Journal of Natural Gas Science and Engineering. 2015; 27: 934-944. DOI:10.1016/j.jngse.2015.09.037.
[48] Alamdari A, Modeling of hydrogen production in catalytic membrane reactor through Ru-based catalysts with MgO and Nb2O5 as supports. Fuel & Combustion. 2022; 15: 100-119. Doi: 10.22034/JFNC.2023.368730.1336
[49] Czaja AU, Trukhan N, Müller U, Industrial applications of metal−organic frameworks. Chem. Soc. Rev. 2009; 38: 1284−1293. https://doi.org/10.1039/B804680H.
[50] Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen storage in metal−organic frameworks. Chem. Soc. Rev. 2009; 38: 1294−1314. https://doi.org/10.1039/B802256A.
[51] Suh MP, Park HJ, Prasad TK, Lim D W, Hydrogen storage in metal−organic frameworks. Chem. Rev. 2012; 112: 782−835. DOI: 10.1021/cr200274s.
[52] Luo Z, Fan S, Gu C, Liu W, Chen J, Li B, Liu J, Metal-organic framework (MOF)-based nanomaterials for biomedical applications. Curr. Med. Chem. 2019; 26: 3341−3369. doi: 10.2174/0929867325666180214123500.
[53] Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Ferey G, Morris RE, Serre C, Metal−organic frameworks in biomedicine. Chem. Rev. 2012; 112: 1232−1268. https://doi.org/10.1021/cr200256v.
[54] Xue Y, Zheng S, Xue H, Pang H, Metal−organic framework composites and their electrochemical applications. J. Mater. Chem. A. 2019; 7: 7301−7327. DOI         https://doi.org/10.1039/C8TA12178H.
[55] Yap MH, Fow KL, Chen GZ, Synthesis and applications of MOF-derived porous nanostructures. Green Energy Environ. 2017; 2: 218−245. https://doi.org/10.1016/j.gee.2017.05.003.
[56] Modaresi Tehrania M, Abbasizadeh S, Alamdari A, Mousavi SE, Prediction of simultaneous sorption of copper(II), cobalt(II) and zinc(II) contaminants from water systems by a novel multi-functionalized zirconia nanofiber, Desalination and Water Treatment. 2017; 62: 403–417. doi: 10.5004/dwt.2017.20135.
[57] Li X, Liu Y, Wang J, Gascon J, Li J, Van der Bruggen B, Metal−organic frameworks based membranes for liquid separation. Chem. Soc. Rev. 2017; 46: 7124−714.https://doi.org/10.1039/C7CS00575J.
[58] Alamdari A, Karimzadeh A, Statistical optimization using central composite design for the oxidative dehydrogenation process of LPG fuel on Fe / HZSM-5 in the presence of external electric field. Fuel & Combustion. 2017; 10: 93-112.
[59] Alamdari a, Karimzadeh R, Faradaic number as a criterion for the promotion effect of external electric field on the heterogeneous oxidative cracking of liquefied petroleum gas on ZSM-5 supported catalyst. Reac Kinet Mech Cat. 2018; 123: 723-742. DOI:10.1007/s11144-017-1301-0.
[60] Alamdari A, Karimzadeh R, Abbasizadeh S, Present state of the art of and outlook on oxidative dehydrogenation of ethane: catalysts and mechanisms. Reviews in Chemical Engineering. 2021; 37: 481-532. https://doi.org/10.1515/revce-2017-0109.
[61] Alamdari A, Karimzadeh A, Oxidative Dehydrogenation of Liquefied Petroleum
Gas on Copper, Zinc and Iron Oxide Impregnated on MFI Zeolite Assisted by Electric Power. Catalysts. 2018; 8: 270. https://doi.org/10.3390/catal8070270.
[62] Alamdari A, Karimzadeh R, Relating catalytic activity of CrHZSM-5 in oxidative dehydrogenation of liquefied petroleum gas under an external DC electric field to electrical properties. Mater. Res. Express 2019; 6: 085503. DOI:10.1088/2053-1591/ab1a06.
[63] Martín N, Portillo A, Ateka A, Cirujano FG, Oar-Arteta L, Aguayo AT, Dusselier M, MOF-derived/zeolite hybrid catalyst for the production of light olefins from CO2. ChemCatChem. 2020; 12: 5750-5758. https://doi.org/10.1002/cctc.202001109.
[64] Alamdari A, Journey ZA, A review on the adsorption of organic dye pollutants with metal organic frameworks, The 3rd  international conference on new technologies in science, Amol, Iran. 2023. https://civilica.com/doc/1754072.
[65] Alamdari A, A review on metal-organic frameworks and their composites for adsorption and photocatalytic degradation of dye pollutants in water, 7th  National Conference of Applied Researches in Electrical, Mechanical and Mechatronic Engineering, Tehran, Iran. 2022. https://civilica.com/doc/1680866.
[66] Alamdari A, Journey ZA, A review on the adsorption of benzene and its homologues on metal-organic frameworks, The 7th  National Conference on Applied Research in Electrical, Mechanical and Mechatronic Engineering, Tehran, Iran. 2023. https://civilica.com/doc/1754072.
[67] Alamdari A, Againejad Meibdi A, A review on the removal of fluoxetine from aquatic environments using the surface adsorption process, The 4th  biennial international oil, gas and petrochemical conference, Bushehr, Iran. 2022. https://civilica.com/doc/1655335.