مطالعه نظری برهمکنش داروی فاویپیراویر با فولرن B40 در محلول آبی برای بررسی دارو رسانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آموزش شیمی، دانشگاه فرهنگیان، صندوق پستی 889-14665 تهران، ایران

2 گروه آموزش علوم تجربی، دانشگاه فرهنگیان، صندوق پستی 889-14665 تهران، ایران

3 گروه آموزش زیست‌شناسی، دانشگاه فرهنگیان، صندوق پستی 889-14665 تهران، ایران

چکیده

در این پژوهش برهمکنش مولکول فاویپیراویر با فولرن بور خالص تازه کشف شده B40 در حلال آبی از طریق محاسبات نظریه تابعیت چگالی بررسی شد. در ابتدا انرژی گیبس حلال‌پوشی فولرن و ایزومرهای مختلف مولکول فاویپیراویر محاسبه شد و مقادیر منفی بدست آمده نشان داد که فرایند انحلال هردو در دمای محیط خودبخودی است. درصد فراوانی چهار ایزومر مختلف فاویپیراویر محاسبه و سپس پایدارترین ساختار تعادلی داروی فاویپیراویر مشخص شد. در ادامه بر همکنش پایدارترین ایزومر داروی فاویپیراویر با فولرن B40 در جهت گیریهای مختلف بررسی و سپس برهمکنشهای بین مولکولی آنها بررسی و محاسبه شد. نتایج نشان داد که داروی فاویپیراویر از طریق اتم اکسیژن گروه کربونیل آمیدی قویترین برهمکنش با مقدار 31/53- کیلوکالری برمول و سپس از طریق اتم نیتروژن حلقه پیرازینی به مقدار 08/46- کیلوکالری برمول ایجاد می‌کند. همچنین نتایج آنالیز تحلیل اوربیتالهای پیوندی طبیعی (NBO) نشان داد که انتقال بار از دارو به فولرن صورت میگیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Theoretical study of the interaction of the Favipiravir with B40 fullerene in aqueous solution for drug delivery

نویسندگان [English]

  • sattar saberi 1
  • Abdolhakim Pangh 1
  • Hamidreza Vatanpour 2
  • َArezoo Zaker 3
  • Hassan Bagheri yazdi 3
1 Department of Chemistry Education, Farhangian University, P.O. Box 889-14665 Tehran, Iran
2 Department of Science Education, Farhangian University, P.O. Box 889-14665 Tehran, Iran
3 Department of Biology Education, Farhangian University, P.O. Box 889-14665 Tehran, Iran
چکیده [English]

In this study, the interaction of the Favipiravir drug with B40 fullerene in aqueous solution was investigated with the Density Functional Theory (DFT). At first, the solvation Gibbs Free energy of fullerene and different isomers of the favipiravir drug and B40 fullerene were calculated. Results indicate that the solvation of B40 fullerene and the Favipiravir drug in water as a solvent are thermodynamically feasible. The percentage of different isomers of favipiravir was calculated from relative Gibbs energy and also, the most stable structure of favipiravir isomers was determined. Furthermore, the interaction of the most stable isomer of the Favipiravir in aqueous solution with B40 fullerene was investigated in different orientations. The results show that the Favipiravir drug strong interacts with B40 fullerene through the oxygen atom of the amide group with -31.53 kcal/mol and through the nitrogen atom of the pyrazine ring with -46.08 kcal/mol. Results of NBO analysis indicates that charges transfer occurred from drug to fullerene.

کلیدواژه‌ها [English]

  • Favipiravir
  • Corona virus
  • B40 fullerene
  • Interaction energy
  • Solvation energy
  • Tautomerism
[1] Moshikur RM, Ali MK, Wakabayashi R, Moniruzzaman M, Goto M. Favipiravir-Based Ionic Liquids as Potent Antiviral Drugs for Oral Delivery: Synthesis, Solubility, and Pharmacokinetic Evaluation. Molecular Pharmaceutics. 2021;18(8):3108-15.
[2]Chen C , Zhang Y , Huang J, Yin P, Cheng Z, Wu J,  Chen S, Zhang Y, Chen  B, Lu  M, Luo Y, Ju L, Zhang  J, Wang X. Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial. medRxiv. 2020;03(17): 20037432. 
[3] Shah PL, Orton CM, Grinsztejn B, Donaldson GC, Crabtree Ramírez B, Tonkin J, et al. Favipiravir in patients hospitalised with COVID-19 (PIONEER trial): a multicentre, open-label, phase 3, randomised controlled trial of early intervention versus standard care. The Lancet Respiratory Medicine [Internet]. 2022 Dec 14; Available from: https://www.sciencedirect.com/science/article/pii/S221326002200412X
‌[4] Babashkina MG, Frontera A, Кертман АВ, Yasemin Saygideğer Kont, S. Murugavel, Safin DA. Favipiravir: insight into the crystal structure, Hirshfeld surface analysis and computational study. Journal of the Iranian Chemical Society. 2021 Jun 9;19(1):85–94.
[5] Kalita P, Tripathi T, Padhi AK. Computational Protein Design for COVID-19 Research and Emerging Therapeutics. ACS central science. 2023 Mar 20;9(4):602–13.
[6] Eltayb WA, Abdalla M, Rabie AM. Novel Investigational Anti-SARS-CoV-2 Agent Ensitrelvir “S-217622”: A Very Promising Potential Universal Broad-Spectrum Antiviral at the Therapeutic Frontline of Coronavirus Species. ACS Omega. 2023 Jan 30;8(6):5234–46.
[7] Wang Y, Li P, Rajpoot S, Saqib U, Yu P, Li Y, et al. Comparative assessment of favipiravir and remdesivir against human coronavirus NL63 in molecular docking and cell culture models. Scientific Reports. 2021 Dec 6;11(1).
[8] Manabe T, Kambayashi D, Akatsu H, Kudo K. Favipiravir for the treatment of patients with COVID-19: a systematic review and meta-analysis. BMC infectious diseases [Internet]. 2021 May 27;21(1):489. Available from: https://pubmed.ncbi.nlm.nih.gov/34044777/
[9] Juhás M, Zítko J. Molecular Interactions of Pyrazine-Based Compounds to Proteins. Journal of Medicinal Chemistry. 2020 Apr 10;63(17):8901–16.
[10] Wang G, Wan J, Hu Y, Wu X, Marija Prhavc, Dyatkina N, et al. Synthesis and Anti-Influenza Activity of Pyridine, Pyridazine, and Pyrimidine C-Nucleosides as Favipiravir (T-705) Analogues. Journal of Medicinal Chemistry. 2016 Apr 27;59(10):4611–24.
[11] Joshi S, Parkar J, Ansari A, Vora A, Talwar D, Tiwaskar M, et al. Role of favipiravir in the treatment of COVID-19. International Journal of Infectious Diseases [Internet]. 2020 Oct 29;0(0).
[12] Lagoja IM, Erik De Clercq. Anti-influenza virus agents: Synthesis and mode of action. Medicinal Research Reviews. 2008 Jan 1;28(1):1–38.
[13] Wang X, Wang L, Yao C, Xie G, Song S, Li H, et al. Novel Formulations of the Antiviral Drug Favipiravir: Improving Permeability and Tabletability. Crystal Growth & Design. 2021 Jun 1;21(7):3807–17.
[14] Rad AS, Ardjmand M, Esfahani MR, Khodashenas B. DFT calculations towards the geometry optimization, electronic structure, infrared spectroscopy and UV–vis analyses of Favipiravir adsorption on the first-row transition metals doped fullerenes; a new strategy for COVID-19 therapy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2021 Feb;247:119082. https://doi.org/10.1016/j.saa.2020.119082
[15] Alver Ö, Parlak C, Umar Y, Ramasami P. DFT/QTAIM analysis of favipiravir adsorption on pristine and silicon doped C20 fullerenes. Main Group Metal Chemistry. 2019 Oct 1;42(1):143–9.
 [16] Soliman KA, Aal SA. Theoretical investigation of favipiravir antiviral drug based on fullerene and boron nitride nanocages. Diamond and Related Materials. 2021 Aug;117:108458.
[17] Yuksel N, Köse A, Fellah MF. The supramolecularly complexes of calix[4]arene derivatives toward favipiravir antiviral drug (used to treatment of COVID-19): a DFT study on the geometry optimization, electronic structure and infrared spectroscopy of adsorption and sensing. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2021 Jun 5;101(1-2):77–89.
[18] Lawson HD, Walton SP, Chan C. Metal–Organic Frameworks for Drug Delivery: A Design Perspective. ACS Applied Materials & Interfaces. 2021 Feb 7;13(6):7004–20.
[19] Kaur H, Kaur J, Kumar R. A review on all boron fullerene (B40): A promising material for sensing and device applications. Materials Today: Proceedings. 2021 Aug;
[20] Zhai HJ, Zhao YF, Li WL, Chen Q, Bai H, Hu HS, et al. Observation of an all-boron fullerene. Nature Chemistry. 2014 Jul 13;6(8):727–31.
[21] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.;et al. Gaussian 09, revision A.1; Gaussian, Inc.: Wallingford, CT, 2009.
[22] Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics. 2010 Apr 21;132(15):154104. https://doi.org/10.1063/1.3382344
[23] Antonov L. Favipiravir tautomerism: a theoretical insight. Theoretical Chemistry Accounts. 2020 Aug;139(8).
[24] Umar Y. Theoretical studies of the rotational and tautomeric states, electronic and spectroscopic properties of favipiravir and its structural analogues: a potential drug for the treatment of COVID-19. Journal of Taibah University for Science. 2020 Jan 1;14(1):1613–25.
[25] Adekoya OC, Adekoya GJ, Sadiku RE, Hamam Y, Ray SS. Density Functional Theory Interaction Study of a Polyethylene Glycol-Based Nanocomposite with Cephalexin Drug for the Elimination of Wound Infection. ACS Omega. 2022 Sep 12;7(38):33808–20 https://doi.org/10.1021/acsomega.2c02347
[26] KUMAR PSV, RAGHAVENDRA V, SUBRAMANIAN V. Bader’s Theory of Atoms in Molecules (AIM) and its Applications to Chemical Bonding. Journal of Chemical Sciences. 2016 Oct;128(10):1527–36.https://doi.org/10.1007/s12039-016-1172-3
[27] Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry. 2011 Dec 8;33(5):580–92. ‌ https://doi.org/10.1002/jcc.22885