بررسی کمانش فشاری برخواص الکترواپتیکی نانوصفحه تتراهگزاگونال - کربن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، مرکز علوم پایه، دانشگاه پدافند هوایی خاتم الانبیاء (ص)، تهران، ایران.

2 گروه فیزیک، مرکز علوم پایه، دانشگاه پدافند هوایی خاتم الانبیاء (ص)،تهران، ایران

چکیده

در این پژوهش جنبه های الکترواپتیکی آلتروپ تتراهگزاگونال- کربن به عنوان یک نانو ساختار دو بعدی تحت تغییرات پارامتر کمانش فشاری بر مبنای نظریه تابعی چگالی (DFT) و روش تقریب پتانسیل کامل PBE-GGA با استفاده از نرم افزار شبیه سازی و کد های محاسباتی بر پایه اصول محاسبات اولیه بررسی شده است. تجزیه و تحلیل نتایج حاصل از محاسبات خواص الکترونی این نانو ساختار، مانند گاف نواری و چگالی حالت ها (DOS) تحت تغییر کمانش، بیانگر این موضوع است که گاف نوار انرژی این نانوصفحه با مقدار ۱/۶۱ الکترون ولت به عنوان یک نیمه هادی شکاف باند مستقیم، ابتدا تحت تاثیر فاکتور کمانش فشاری کمی افزایش می یابد و سپس با اعمال ضرایب کمانش فشاری بالاتر، تا ۱/۱۱ الکترون ولت کاهش می یابد . خواص اپتیکی این نانوصفحه، در قطبش خارج از صفحه، با اعمال شرایط کمانش فشاری در طیف نور مرئی،تغییرات آرام و منظمی دارد. همچنین با توجه به نتایج حاصله تطابق قابل قبولی بین خواص الکترونی و اپتیکی این نانوساختار دوبعدی مشاهده می گردد که بیانگر مطابقت رفتارهای الکترونی و اپتیکی می باشد که می توان این نانوصفحه کربنی را به عنوان یک ماده مناسب برای طراحی دستگاه‌های الکترواپتیکی پیشنهاد نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating compressive buckling on the electro-optical properties of Tetra-Hexagonal-Carbon nanosheet

نویسندگان [English]

  • Hamidreza Alborznia 1
  • Mehdi Nairzadeh 2
1 Department of Physics, Center of Basic Science, Khatam Ol-Anbia (PBU) University, Tehran, Iran.
2 Department of Physics, Center of Basic Science, Khatam Ol-Anbia (PBU) University, Tehran, Iran.
چکیده [English]

: In this research, the electro-optical aspects of Tetra-Hexagonal-Carbon allotrope as a two-dimensional nanostructure under compressive buckling parameter based on density functional theory (DFT) with PBE-GGA full potential approximation method using simulation software and computational codes based on first-principles calculations have been investigated. The analysis of the results obtained from the calculations of the electronic properties of this nanostructure, such as the band gap and density of states (DOS) under buckling change, indicates that the energy band gap of this nanosheet as a direct band gap semiconductor with 1.61 eV, increases slightly under the influence of the compressive buckling factor and then decreases down to 1.11 eV by applying higher compressive buckling factors. The optical properties of this nanosheet have smooth and regular changes in the out-of-plane polarization, by applying compressive buckling conditions in the visible light spectrum. Also, according to the obtained results, an acceptable match between the electronic and optical properties of this two-dimensional nanostructure is observed, which indicates the correspondence of electronic and optical behaviors, which can predict this carbon nanosheet is a suitable material for designing electro-optical devices.

کلیدواژه‌ها [English]

  • Density functional theory (DFT)
  • Two-dimensional nanostructure
  • Compressive buckling
  • Electro-optical properties
  • First-principles calculations
[1] Novoselov KS, et al. Electric Field Effect in Atomically Thin Carbon Films. Science.2004; 306(5696):666-669.
[2] Okada S, Energetics of nanoscale graphene ribbons: Edge geometries and electronic structures. Physical Review B. 2008; 77(4): 041408- 041411.
 
 
[3] Novoselov KS, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005; 438: 197-200.
[4] Mukhopadhyay G, Behera H. Graphene and some of its structural analogues: full-potential density functional theory calculations. World Journal of Engineering. 2013; 10 (1): 39-48.
[5] Su C, Jiang H, Feng J. Two-dimensional carbon allotrope with strong electronic anisotropy. Physical Review B. 2013; 87 (7): 075453- 075457.
[6] Zhu J, et al. Graphene and Graphene-Based Materials for Energy Storage Applications. Small. 2014; 10 (17): 3480-3498.
[7] Rao CNR, Ramakrishna Matte HSS, Maitra U. Graphene Analogues of Inorganic Layered Materials. Angewandte Chemie International Edition, 2013; 52 (50):13162-13185. DOI:10.1002/anie.201301548
[8] Malko D, et al. Competition for Graphene: Graphynes with Direction-Dependent Dirac Cones. Physical Review Letters. 2012; 108 (8): 086804-086807. DoI:10.1103/PhysRevLett.108.086804
[9] Liu CC, Feng W, Yao Y. Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium. Physical Review Letters. 2011; 107 (7):076802-076805.
[10] Vogt P, et al. Silicene: Compelling Experimental Evidence for Graphenelike­Two-Dimensional Silicon. Physical Review Letters. 2012; 108 (15):155501-155505.
[11] Giovannetti G, et al. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Physical Review B. 2007; 76 (7):073103-073106. DOI:10.1103/PhysRevB.76.073103
[12] Zhang S, et al. Atomically Thin Arsenene and Antimonene: Semimetal–Semiconductor and Indirect–Direct Band-Gap Transitions. Angewandte Chemie. 2015;54(10):3112-3115. DOI:10.1002/anie.201411246
[13] Balendhran S, et al. Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene. Small.2015;11(6):640-652. DOI:10.1002/smll.201402041
[14] Zhang  S, et al. Antimonene Oxides: Emerging Tunable Direct Bandgap Semiconductor and Novel Topological Insulator. Nano Letters. 2017; 17 (6):3434-3440.
[15] Zhang  S, et al. Recent progress in 2D group-VA semiconductors: from theory to experiment. Chemical Society Reviews. 2018;47(3): 982-1021.
[16] Zhou W, et al. DFT coupled with NEGF study of a promising two-dimensional channel material: black
 
 
 
 
phosphorene-type GaTeCl. Nanoscale. 2018;10(8):3350-3355.                    . DOI:10.1039/C7NR08252E
[17] Naseri M. First-principles prediction of a novel cadmium disulfide monolayer (penta-CdS2): Indirect to direct band gap transition by strain engineering. Chemical Physics Letters. 2017; 685:310-315.
[18] Alborznia H, Naseri M, Fatahi N. Pressure effects on the optical and electronic aspects of T-Carbon: A first principles calculation. Optik. 2019; 180: 125-133.          DOI:10.1016/j.ijleo.2018.11.077
[19] Naseri M. SiP2S monolayer: A two dimensional semiconductor with a moderate band gap. Chemical Physics Letters. 2019; 715:100-104.
[20] Alborznia HR, Mohammadi ST. Investigation of electronic and optical properties of novel graphene-like GeS2 monolayer by density function theory. Iranian Journal of Physics Research. 2020; 20 (2): 259-265.
[21] Naseri M. Penta-SiC5 monolayer: A novel quasi-planar indirect semiconductor with a tunable wide band gap. Physics Letters A. 2018; 382(10):710-715.
[22] Alborznia H, Amirian S, Mohammadi ST. Prediction and study of structural and electro-optical properties of two-dimensional sulfur germanium diphosphide nanostructure by Density Functional Theory. Journal of Research on Many-body. 2021;11(4):1-12.
[23] Alborznia HR, Mohammadi ST. Electronic and optical aspects of GeP2S 2D monolayer under biaxial stress and strain conditions.  Bull. Mater. Sci. 2021;44:180.
[24] Marjaoui A, et al. First-principles calculations to investigate structural, electronic and optical properties of Janus AsMC3 (M: Sb, Bi) monolayers for optoelectronic applications. Solid State Comm. 2022; 343:114667.
[25] Tayran C, Caglayan R, et al. Biaxial Strain-Induced Electronic Structure and Optical Properties of SiP2S Monolayer, J. Elec. Mater. 2021; 50: 6253-6260.
[26] Alborznia H, Mohammadi ST.  Biaxial stress and strain effects on optical and electronic aspects of B2C nanostructure: a first-principle calculation.Indian Journal of physics.2022;96:3117-3123. DOI:10.1007/s12648-021-02272-1
 
 
 
 
 
 
[27] Alborznia H, Amirian S, Nazirzadeh M. Buckling variation effects on optical and electronic properties of GeP2S nanostructure: a first-principles calculation. Opt. Quant. Electron.2022; 54:608.
[28] Ram B, Mizuseki H.  Tetrahexcarbon: A two-dimensional allotrope of carbon. Carbon. 2018;137:266-273.
[29] Hoat DM, Amirian Sh, Alborznia H, et al. Strain effect on the electronic and optical properties of 2D Tetrahexcarbon: a DFT-based study. Indian Journal of Physics. 2021; 95: 2365–2373.
[30] Alborznia H,  Naseri M, Fatahi N. Buckling strain effects on electronic and optical aspects of penta-graphene nanostructure. Superlatt. and Microstruc. 2019; 133: 106217.
[31] Alborznia H. First-Principle Study Of The Buckling Compresive Strain Induced On Optoelectronic Aspects Of Two- Dimensional B2C Nanostructure Surf. Rev. Lett. 2022; 29(6): 2250078.
[32] Blaha P, et al. WIEN2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys.2020;152(7): 074101.
[33] Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Physical Review Letters. 1996;77 (18):3865-3868. DOI:10.1103/PhysRevLett.77.3865
[34] Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Physical Review B. 1976; 13 (12) : 5188 – 5192.                   DOI:10.1103/PhysRevB.13.5188
[35] Ehrenreich H, Cohen MH. Self-Consistent Field Approach to the Many-Electron Problem. Physical Review. 1959; 115 (4): 786-790.
[36] Birch F. Equation of state and thermodynamic parameters of NaCl to 300 kbar in the high-temperature domain­. Journal of Geophysical Research: Solid Earth. 1986; 91(B5): 4949-4954.
[37] Saleh BEA, Teich MC. Photons in Semiconductors. In Fundamentals of Photonics. Wiley, New York. 1991;15:542-591.
[38] Abt, R, Ambrosch-Draxl C, Knoll P. Optical response of high temperature superconductors by full potential LAPW band structure calculations. Physica B: Condensed Matter. 1994;194-196 (2):1451-1452.