ارزیابی اندازه ذرات نانو حامل های دارویی بوسیله میکروسکوپ الکترونی دربهبود درمان سرطان

نوع مقاله : مروری

نویسندگان

1 دانشکده شیمی، دانشگاه صنعتی امیرکبیر ، تهران، صندوق پستی: 4413-15875

2 پژوهشگر پسا دکتری، دانشکده شیمی، دانشگاه صنعتی امیرکبیر ، تهران، صندوق پستی: 4413-15875

3 دانشکده شیمی، دانشگاه صنعتی امیرکبیر ، تهران، صندوق پستی: 4413- 15875

4 گروه مهندسی پلیمر، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران مرکز تحقیقات نانو، دانشگاه آزاد اسلامی واحد

چکیده

افزایش سریع سرطان در سراسر جهان اهمیت استراتژی های درمانی را نشان می دهد. سیستم های دارورسانی هدفمند علاوه بر کاهش عوارض جانبی درمان های مرسوم، عملکرد و اثربخشی را افزایش می دهند. در حال حاضر استراتژی های زیادی مانند روش های پزشکی، پرتودرمانی و شیمی درمانی ،که هر کدام دارای محدودیت هایی هستند و ایمن و موثر تلقی نمی شوند. برای غلبه بر این مشکلات، رهایش دارو بر روی سلول های سرطانی هدف در مقایسه با بافت طبیعی از طریق سیستم های دارورسانی (DDSs) پیشنهاد شده است . به طور خاص، از آنجایی که محل‌های تومور نسبت به سلول‌های سالم PH پایین‌تری دارند، توسعه سیستم‌های پاسخ‌دهنده به pH انتخاب‌پذیری داروهای ضد سرطان را در مقایسه با درمان‌های سنتی بهبود می‌بخشد، عوارض جانبی را به حداقل می‌رساند و مصرف بیش از حد را از بین می‌برد . این سیستم ها همچنین به دلیل افزایش نفوذپذیری (EPR) برای افزایش تجمع داروها در محل های تومور امکان پذیر هستند. اندازه ذرات یکی از عوامل مهم و تاثیر گذار در نانو حامل های حاوی داروهای ضد سرطان می باشد. در این پژوهش برای اولین بار به بررسی و آنالیز اندازه ذرات به دست آمده نانو حامل ها از آزمون میکروسکوپ الکترونی در بهبود رهایش دارو های ضد سرطان پرداخته شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of nanoparticle size of drug carriers by electron microscopy in improving cancer treatment

نویسندگان [English]

  • Mahshid Imeni 1
  • MohammadHossein Karami 2
  • Majid Abdouss 3
  • MohammadReza Kalaee 4
1 Department of Chemistry, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Tehran, Iran
2 Department of Chemistry, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Tehran, Iran
3 Department of Chemistry, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Tehran, Iran
4 Department of Polymer Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, P.O. Box: 19585-466, Tehran, Iran. Nano Research Center, Islamic Azad University, South Tehran Branch.
چکیده [English]

The global rise in cancer cases highlights the need for effective therapeutic strategies that not only reduce side effects but also enhance performance and efficacy. Conventional treatments such as medical methods, radiation therapy, and chemotherapy have limitations and safety concerns. To address these issues, drug delivery systems (DDSs) or nano drug delivery systems( NDDSs) have been proposed to release drugs specifically on cancer cells while sparing normal tissue. pH-responsive systems have been developed to improve the selectivity of anticancer drugs by taking advantage of the lower pH of tumor sites. This approach minimizes side effects and overdosage and is made possible by enhanced permeability and retention (EPR), which increases drug accumulation at tumor sites. Particle size is a crucial factor in nanocarriers containing anticancer drugs, and in this study, for the first time, the particle size of nanocarriers (nano systems)was analyzed using electron microscopy to improve the release of anticancer drugs.

کلیدواژه‌ها [English]

  • Nanoparticles
  • Nanocarriers
  • Anticancer drugs
  • Scanning Electron Microscope
  • Particle Size
[1] Norouzi Z, Abdouss M. Electrospun nanofibers using β-cyclodextrin grafted chitosan macromolecules loaded with indomethacin as an innovative drug delivery system. Int J Biol Macromol. 2023;233:123518. ISSN 0141-8130.
[2] Shahriari MH, Hadjizadeh A, Abdouss M. Advances in self-healing hydrogels to repair tissue defects. Polym Bull. 2023;80:1155-1177. doi:10.1007/s00289-022-04133-1.
[3] Mohagheghpour E, Farzin L, Ghoorchian A, Sadjadi S, Abdouss M. Selective detection of manganese(II) ions based on the fluorescence turn-on response via histidine functionalized carbon quantum dots. Spectrochim Acta A Mol Biomol Spectrosc. 2022;279:121409. doi:10.1016/j.saa.2022.121409.
 
[4] Shahriari MH, Hadjizadeh A, Abdouss M. Advances in self-healing hydrogels to repair tissue defects. Polym Bull. 2023;80:1155-1177. doi:10.1007/s00289-022-04133-1.
 
[5] Karami M.H.,Abdouss M., Kalaee M.R., MoradiO.,  Application of Hydrogel Nanocomposites in Biotechnology:  A review study, Iran polymer technology, research and development, In Press,2023,dor: 20.1001.1.25383345.1402.8.1.3.5.
 
[6] Karami, M., Abdouss, M., Kalaee, M., Moradi, O. Investigating the Antibacterial Properties of Chitosan Nanocomposites Containing Metal Nanoparticles For Using in Wound Healings: A Review Study. Basparesh, 2023; InPress , doi: 10.22063/basparesh.2023.3285.1648.
 
[7] Karami, M. H., Abdouss, M., Kalaee, M., Moradi, O. The application of chitosan-based nanocarriers in improving the release of the anticancer drug quercetin: a review study. Nano World, 2023; 19(70): 21-11.dor. 20.1001.1.24765945.1402.19.70.2.5.
 
[6] Lu B, Huang Y, Chen Z, Ye J, Xu H, Chen W, Long X. Niosomal nanocarriers for enhanced skin delivery of quercetin with functions of anti-tyrosinase and antioxidant. Molecules. 2019;24. doi:10.3390/molecules24122322.
 
[7] Hatahet T, Morille M, Hommoss A, Devoisselle JM, Müller RH, Bégu S. Liposomes, lipid nanocapsules and smartCrystals®: A comparative study for an effective quercetin delivery to the skin. Int. J. Pharm. 2018;542:176-185. doi:10.1016/j.ijpharm.2018.03.019.
 
[8] García-Mediavilla V, Crespo I, Collado PS, Esteller A, Sánchez-Campos S, Tuñón MJ, González-Gallego J. The anti-inflammatory flavones quercetin and kaempferol cause
 inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur. J. Pharmacol. 2007;557:221-229. doi:10.1016/j.ejphar.2006.11.014.
 
[9] Jia L, Huang S, Yin X, Zan Y, Guo Y, Han L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci. 2018;208:123-130. doi:10.1016/j.lfs.2018.07.027.
 
[10] Scambia G, Ranelletti FO, Panici PB, De Vincenzo R, Bonanno G, Ferrandina G, Piantelli M, Bussa S, Rumi C, Cianfriglia M, Mancuso S. Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target. Cancer Chemother. Pharmacol. 1994;34:459-464. doi:10.1007/BF00685655.
 
[11] Hemati M, Haghiralsadat F, Yazdian F, Jafari F, Moradi A, Malekpour-Dehkordi Z. Development and characterization of a novel cationic PEGylated niosome-encapsulated forms of doxorubicin, quercetin and siRNA for the treatment of cancer by using combination therapy. Artif. Cells, Nanomedicine Biotechnol. 2019;47:1295-1311. doi:10.1080/21691401.2018.1489271.
 
[12] Sarkar A, Ghosh S, Chowdhury S, Pandey B, Sil PC. Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochim. Biophys. Acta - Gen. Subj. 2016;1860:2065-2075. doi:10.1016/j.bbagen.2016.07.001.
 
[13] Maghsoudi A, Yazdian F, Shahmoradi S, Ghaderi L, Hemati M, Amoabediny G. Curcumin-loaded polysaccharide nanoparticles: Optimization and anticariogenic activity against Streptococcus mutans. Mater. Sci. Eng. C. 2017;75:1259-1267. doi:10.1016/j.msec.2017.03.032.
 
[14] Awasthi R, Manchanda S, Das P, Velu V, Malipeddi H, Pabreja K, Pinto T, Gupta G, Dua K. Poly(vinylpyrrolidone)- Chapter 9, in: Eng. Biomater. Drug Deliv. Syst. Beyond Polyethyl. Glycol. Elsevier Ltd; 2018. pp. 255-272. doi:10.1016/B978-0-08-101750-0.00009-X.
 
[15] Priya P, Raja A, Raj V. Interpenetrating polymeric networks of chitosan and egg white with dual crosslinking agents polyethylene glycol/polyvinylpyrrolidone as a novel drug carrier. Cellulose. 2016;23:699-712. doi:10.1007/s10570-015-0821-x.
 
[16] Cao L, Wu X, Wang Q, Wang J. Biocompatible nanocomposite of TiO2 incorporated bi-polymer for articular cartilage tissue regeneration: A facile material. J. Photochem. Photobiol. B Biol. 2018;178:440-446. doi:10.1016/j.jphotobiol.2017.10.026.
[18] Ninan N, Forget A, Shastri VP, Voelcker NH, Blencowe A. Antibacterial and Anti-Inflammatory pH-Responsive Tannic Acid-Carboxylated Agarose Composite Hydrogels for Wound Healing. ACS Appl Mater Interfaces. 2016;8:28511-28521. doi:10.1021/acsami.6b10491.
 
[19] van Elk M, Murphy BP, Eufrásio-da-Silva T, O’Reilly DP, Vermonden T, Hennink PWE, Duffy GP, Ruiz-Hernández E. Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems. Int J Pharm. 2016;515:132-164. doi:10.1016/j.ijpharm.2016.10.013.
 
[20] Malekimusavi N, Ghaemi A, Masoudi G, et al. Graphene oxide-l-arginine nanogel A pH-sensitive fluorouracil nanocarrier. Biotechnol Appl Biochem. 2019;66:772-780. doi:10.1002/bab.1768.
 
[21] Date P, Tanwar A, Ladage P, Kodam KM, Ottoor D. Carbon dots-incorporated pH-responsive agarose-PVA hydrogel nanocomposites for the controlled release of norfloxacin drug. Polym Bull. 2020;77:5323-5344. doi:10.1007/s00289-019-03015-3.
 
[22] Wang K, Wen HF, Yu DG, Yang Y, Zhang DF. Electrosprayed hydrophilic nanocomposites coated with shellac for colon-specific delayed drug delivery. Mater Des. 2018;143:248-255. doi:10.1016/j.matdes.2018.02.016.
 
[23] Ding Y, Dou C, Chang S, Xie Z, Yu DG, Liu Y, Shao J. Core-shell eudragit S100 nanofibers prepared via triaxial electrospinning to provide a colon-targeted extended drug release. Polymers (Basel). 2020;12. doi:10.3390/POLYM12092034.
 
[24] Larrañeta E, Stewart S, Ervine M, Al-Kasasbeh R, Donnelly RF. Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications. J Funct Biomater. 2018;9. doi:10.3390/jfb9010013.
 
[25] Argenta DF, dos Santos TC, Campos AM, Caon T. Hydrogel Nanocomposite Systems- Chapter 3. In: Nanocarriers Drug Deliv Nanosci Nanotechnol Drug Deliv. 2019:81-131. doi:10.1016/b978-0-12-814033-8.00003-5.
 
[26] Kong L, Mu Z, Yu Y, Zhang L, Hu J. Polyethyleneimine-stabilized hydroxyapatite nanoparticles modified with hyaluronic acid for targeted drug delivery. RSC Adv. 2016;6:101790-101799. doi:10.1039/c6ra19351j.
 
[27] Fan L, Zhang J, Wang A. In situ generation of sodium alginate/hydroxyapatite/halloysite nanotubes nanocomposite hydrogel beads as drug-controlled release matrices. J Mater Chem B. 2013;1:6261-6270. doi:10.1039/c3tb20971g.
 
[28] Zhao H, Wu C, Gao D, Chen S, Zhu Y, Sun J, Luo H, Yu K, Fan H, Zhang X. Antitumor effect by hydroxyapatite nanospheres: Activation of mitochondria-dependent apoptosis and negative regulation of phosphatidylinositol-3-kinase/protein kinase B pathway. ACS Nano. 2018;12:7838-7854. doi:10.1021/acsnano.8b01996.
 
[29] Rawat AT, Mahavar HK. Study of electrical properties of polyvinylpyrrolidone/polyacrylamide blend thin films. Bull Mater Sci. 2014;37:273-279.
 
[30] Zucca P, Fernandez-Lafuente R, Sanjust E. Agarose and its derivatives as supports for enzyme immobilization. Molecules. 2016;21:1-25. doi:10.3390/molecules21111577.
 
 
[31] Vasile C, Pamfil D, Stoleru E, Baican M. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules. 2020;25:1539. doi:10.3390/molecules25071539.
 
[32] Gun'ko VM, Savina IN, Mikhalovsky SV. Properties of Water Bound in Hydrogels. Gels. 2017;3:37. doi:10.3390/gels3030037.
 
[33] Wang H, Heilshorn SC. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv Mater. 2015;27:3717-3736. doi:10.1002/adma.201501051.
 
[34] Dabiri G, Damstetter E, Phillips T. Choosing a Wound Dressing Based on Common Wound Characteristics. Adv Wound Care. 2016;5:32-41. doi:10.1089/wound.2014.0603.
 
[35] Du X, Zhou J, Shi J, Xu B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem Rev. 2015;115:13165-13307. doi:10.1021/acs.chemrev.5b00112.
 
[36] Bashir S, Hina M, Iqbal J, Rajpar AH, Mujtaba MA, Alghamdi NA, Wageh S, Ramesh K, Ramesh S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers. 2020;12:2702. doi:10.3390/polym12112702.
 
[37] Rebers L, Reichsöllner R, Regett S, Tovar G, Borchers K, Baudis S, Southan A. Differentiation of physical and chemical cross-linking in gelatin methacryloyl hydrogels. Sci Rep. 2021;11:3256. doi:10.1038/s41598-021-82614-2.
 
[38] Morello G, Polini A, Scalera F, Rizzo R, Gigli G, Gervaso F. Preparation and Characterization of Salt-Mediated Injectable Thermosensitive Chitosan/Pectin Hydrogels for Cell Embedding and Culturing. Polymers. 2021;13:2674. doi:10.3390/polym13162674.
 
[39] O'Meara S, Martyn-St James M, Adderley UJ. Alginate dressings for venous leg ulcers. Cochrane Database Syst Rev. 2015;(2015):CD010182. doi:10.1002/14651858.CD010182.pub2.
 
[40] Echalier C, Laurine V, Martinez J, Mehdi A, Gilles S. Chemical cross-linking methods for cell encapsulation in hydrogels. Materials Today Communications. 2019;20:100536. doi:10.1016/j.mtcomm.2019.100536.
 
[41] Chang NS, Lin R, Sze CI, Aqeilan RI. Editorial: WWDomain Proteins in Signaling, Cancer Growth, Neural Diseases, and Metabolic Disorders. Front Oncol. 2019;9:719. doi:10.3389/fonc.2019.00719.
 
[42] Brown BN, Badylak SF. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res. 2014;163(4):268-285. doi:10.1016/j.trsl.2013.11.010.
 
[43] Xin H, Biswas N, Li P, Zhong C, Chan TC, Nudleman E, Ferrara N. Heparin-binding VEGFR1 variants as long-acting VEGF inhibitors for treatment of intraocular neovascular disorders. Proc Natl Acad Sci U S A. 2021;118(5):e1921252118. doi:10.1073/pnas.1921252118.
 
[44] Zhang X, Tan B, Wu Y, Zhang M, Liao J. A Review on Hydrogels with Photothermal Effect in Wound Healing and Bone Tissue Engineering. Polymers. 2021;13(12):2100. doi:10.3390/polym13122100.
 
[45] Verhelst S, Bonger KM, Willems LI. Bioorthogonal Reactions in Activity-Based Protein Profiling. Molecules. 2020;25(26):5994. doi:10.3390/molecules25265994.
 
[46] Gupta A, Briffa SM, Swingler S, Gibson H, Kannappan V, Adamus G, Kowalczuk M, Martin C, Radecka I. Synthesis of Silver Nanoparticles Using Curcumin-Cyclodextrins Loaded into Bacterial Cellulose-Based Hydrogels for Wound Dressing Applications. Biomacromolecules. 2020;21(5):1802-1811. doi:10.1021/acs.biomac.0c00113.
 
[47] Nešović K, Janković A, Kojić V, Vukašinović-Sekulić M, Perić-Grujić A, Rhee KY, Mišković-Stanković V. Silver/poly(vinyl alcohol)/chitosan/graphene hydrogels—Synthesis, biological and physicochemical properties and silver release kinetics. Compos Part B Eng. 2018;154:175-185. doi:10.1016/j.compositesb.2018.08.014.
 
[48] Sun A, He X, Li L, Li T, Liu Q, Zhou X, Ji X, Li W, Qian Z. An injectable photopolymerized hydrogel with antimicrobial and biocompatible properties for infected skin regeneration. NPG Asia Mater. 2020;12:25. doi:10.1038/s41427-020-0215-8.
 
[49] Abdollahi Z, Zare EN, Salimi F, Goudarzi I, Tay FR, Makvandi P. Bioactive Carboxymethyl Starch-Based Hydrogels Decorated with CuO Nanoparticles: Antioxidant and Antimicrobial Properties and Accelerated Wound Healing In Vivo. Int J Mol Sci. 2021;22(5):2531. doi:10.3390/ijms22052531.