تهیه نانوپوشش‌های اپوکسی بر پایه گرافن مغناطیسی حاوی نانوذرات فلزی نیکل و کبالت با مقاومت بالا، ضدخوردگی و مقاوم در برابر آب جهت مصارف صنعتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی، دانشکده علوم پایه، دانشگاه شهیدمدنی آذربایجان، تبریز، ایران

2 گروه شیمی، دانشکده علوم پایه، دانشگاه شهید مدنی آذربایجان، تبریز-ایران

چکیده

پیشرفت‌های به‌دست آمده در فناوری نانو، تحولات قابل ملاحظه‌ای در فرآیندهای پوشش‌دهی و فرموله کردن آنها به وجود آورده است که کاربردهای موثری در مقابله با آتش‌سوزی، خوردگی، ضربه، حرارت، سایش، فرسودگی و سایر عوامل محیطی ایجاد کرده است. در این زمینه، امکان کنترل شاخص‌هایی چون اندازه، ویژگی‌های شیمیایی، محافظت سطح، فعالیت و واکنش‌پذیری نانوذرات فراهم شده است. کاربرد نانوپوشش‌ها در سازه های فولادی در صنایع سبک و سنگین و دریایی با توجه به ساختار ویژة آن‌ها و خواص ناشی از این ساختار تعیین می‌شود. هدف از کار پژوهشی حاضر، تهیه نانو پوشش‌های اپوکسی برپایه کامپوزیت گرافنی برای جلوگیری از خوردگی فلز فولاد می‌باشد. برای تهیه این ترکیبات ابتدا گرافن‌اکسید به روش اصلاح شده هامر سنتز گردید. سپس با استفاده از فلزات آّهن، نیکل و کبالت کامپوزیت مورد نظر تهیه و با استفاده از آنالیزهای FTIR، FESEM، XRD، EDX ، TGAوDSC مورد شناسایی قرار گرفت. جهت بررسی و ارزیابی مقاومت پوشش تهیه شده و اجزای آن در برابر خوردگی از منحنی های تافل استفاده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Preparation of epoxy nanocoatings based on magnetic graphene containing nickel and cobalt metal nanoparticles with high resistance, anti-corrosion, and water resistance for industrial use

نویسندگان [English]

  • Abdolreza Abri 1
  • Farzad Dehgan 2
1 Chemistry Department,,. Faculty of Science, Azarbaijan Shahid Madan, IRANi University, Tabriz
2 Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz. IRAN
چکیده [English]

The advances achieved in nanotechnology have brought significant changes in the coating and formulating processes, which have created practical applications in dealing with fire, corrosion, impact, heat, wear, wear and tear and other environmental factors. In this context, it is possible to control indicators such as size, chemical properties, surface protection, activity, and reactivity of nanoparticles. The application of nanocoatings in steel structures in light and heavy industries and marine is determined according to their specific design and the properties resulting from this structure. The aim of the present research work is to prepare epoxy nano-coatings based on graphene composite to prevent the corrosion of steel. Graphene oxide was first synthesized by the modified Hamer method to prepare these compounds. Then, by using iron, nickel and cobalt metals, the desired composite was prepared and identified using FTIR, FESEM, XRD, EDX, TGA and DSC analyses. TOEFL curves were used to check and evaluate the resistance of the prepared coating and its components against corrosion.

کلیدواژه‌ها [English]

  • Nanocoatings
  • Iron nanoparticles
  • Magnetic graphene oxide
  • Corrosion
[1] Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite
materials. nature. 2006;442(7100):282-6. https://doi.org/10.1038/nature04969
[2] Tawabini B, Al-Khaldi S, Atieh M, Khaled M. Removal of mercury from water by multi-walled carbon nanotubes. Water science and technology. 2010;61(3):591-8. https://doi.org/10.2166/wst.2010.897
[3] Pyrzyńska K, Bystrzejewski M. Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010;362(1-3):102-9. https://doi.org/10.1016/j.colsurfa.2010.03.047
[4] Choi H-J, Park J-H, Min T-B, Jang H-O, Lee H-S. An Experimental Study on the Evaluation of EMP Shielding Performance of Concrete Applied with ATMSM Using Zn-Al Alloy Wire. Journal of the Korea Institute of Building Construction. 2019;19(3):209-17. https://doi.org/10.5345/JKIBC.2019.19.3.209
[5] Chen H, Li C, Qu L. Solution electrochemical approach to functionalized graphene: History, progress and challenges. Carbon. 2018;140:41-56. https://doi.org/10.1016/j.carbon.2018.08.027
[6] Geim AK, Novoselov KS. The rise of graphene.  Nanoscience and technology: a collection of reviews from nature journals: World Scientific; 2010. p. 11-9.
https:// doi: 10.1038/nmat1849.
[7] Meng Q, Wu H, Zhao Z, Araby S, Lu S, Ma J. Free-standing, flexible, electrically conductive epoxy/graphene composite films. Composites Part A: Applied Science and Manufacturing.2017;92:42-50. https://doi.org/10.1016/j.compositesa.2016.10.028
[8] Mishra N, Boeckl J, Motta N, Iacopi F. Graphene growth on silicon carbide: A review. physica status solidi Materialia.2020;198:242-56. https://doi.org/10.1016/j.actamat.2020.07.064 (a).2016;213(9):2277-89. https://doi.org/10.1002/pssa.201600091
[9] Megawati M, Chua CK, Sofer Z, Klímová K, Pumera M. Nitrogen-doped graphene: effect of graphite oxide precursors and nitrogen content on the electrochemical sensing properties. Physical Chemistry Chemical Physics. 2017;19(24):15914-23.
https://doi.org/10.1039/C7CP00520
[10] Zaaba N, Foo K, Hashim U, Tan S, Liu W-W, Voon C. Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia engineering. 2017;184:469-77. https://doi.org/10.1016/j.proeng.2017.04.118
[11] Ciszewski M, Koszorek A, Radko T, Szatkowski P, Janas D. Review of the selected carbon-based materials for symmetric supercapacitor application. Journal of Electronic Materials. 2019;48(2):717-44. https://doi.org/10.1007/s11664-018-6811-7
[12] Ranjan P, Kumar A, Thakur AD. Free standing graphene oxide films for gas sensing applications. Materials Today: Proceedings. 2018;5(1):732-6. https://doi.org/10.1016/j.matpr.2017.11.140
[13] Jeong W-J, Oh Y-C, Kim S-H. Effect of Hydrogen in Rapid Thermal Annealing on the Graphene-Zinc Oxide Electrode for Supercapacitor. Journal of the Korean institute of surface engineering. 2019;52(3):123-9. 1 https://doi.org/0.3390/ma9080695
[14] Fakoya MF, Shah SN. Emergence of nanotechnology in the oil and gas industry: Emphasis on the application of silica nanoparticles. Petroleum. 2017;3(4):391-405. https://doi.org/10.1016/j.petlm.2017.03.001
[15] Gopakumar T, Patel N, Xanthos M. Effect of nanofillers on the properties of flexible protective polymer coatings. Polymer composites. 2006;27(4):368-80. https://doi.org/10.1002/pc.20199
[16] Gray J, Luan B. Protective coatings on magnesium and its alloys—a critical review. Journal of alloys and compounds.2002;336(1-2):88-113. https://doi.org/10.1016/S0925-8388(01)01899-0
[17] Mozumder MS, Mourad A-HI, Pervez H, Surkatti R. Recent developments in multifunctional coatings for solar panel applications: A review. Solar Energy Materials and Solar Cells. 2019;189:75-102. https://doi.org/10.1016/j.solmat.2018.09.015
[18] Larcher MN, Cayron C, Blatter A, Soulignac R, Logé RE. The thermally activated distortion with amplification effect and related variant selection in red gold alloys. Acta
[19] Park N-G, Zhu K. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nature Reviews Materials. 2020:1-18. https://doi.org/10.1038/s41578-019-0176-2
[20] Ingrole RS, Gill HS. Microneedle coating methods: a review with a perspective. Journal of Pharmacology and Experimental Therapeutics. 2019;370(3):555-69. https://doi.org/10.1124/jpet.119.258707
[21] Pham HQ, Marks MJ. Epoxy resins. Ullmann's Encyclopedia of Industrial Chemistry. 2000. https://doi.org/10.1002/14356007.a09_547
[22] Jin F-L, Li X, Park S-J. Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry. 2015;29:1-11. https://doi.org/10.1016/j.jiec.2015.03.026
[23] May C. Epoxy resins: chemistry and technology: Routledge; 2018.
[24] Rakotomalala M, Wagner S, Döring M. Recent developments in halogen free flame retardants for epoxy resins for electrical and electronic applications. Materials. 2010;3(8):4300-27. https://doi.org/10.3390/ma3084300
[25] Mohan P. A critical review: the modification, properties, and applications of epoxy resins. Polymer-plastics technology and engineering. 2013;52(2):107-25. https://doi.org/10.1080/03602559.2012.727057
[26] Marcano DC, Kosynkin DV, Berlin jM, Sinitskii A, Sun Z, Slesarev A, Tour J.M, Improved synthesis of graphene oxide, ACS Nano. 2010; 4(8): 4806-4814. https://doi.org/10.1021/nn1006368
[27] Bai S, Shen X, Zhu G, Li M, Xi H, Chen K, In situ Growth of NixCo100–x Nanoparticles on Reduced Graphene Oxide Nanosheets and Their Magnetic and Catalytic Properties, ACS applied materials & interfaces, 2012; 4(5): 2378-2386. https://doi.org/10.1021/am300310d
[28] Hussain N, Gogoi P, Khare P, Das MR, Nickel nanoparticles supported on reduced graphene oxide sheets: a phosphine free, magnetically recoverable and cost effective catalyst for Sonogashira cross-coupling reactions, RSC Advances, 2015; 5(125): 103105-103115. DOI