بهبود انتقال گرمای جابه‌جایی برج‌های خنک‌کننده خشک با استفاده از نانوسیال آلی– فلزی نیکل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی سامانه‌های انرژی دانشکده بین‌الملل کیش دانشگاه تهران

2 دانشکده مهندسی عمران و محیط‌زیست، دانشگاه صنعتی امیرکبیر

3 دانشکده محیط‌زیست، دانشگاه تهران

چکیده

در این پژوهش، یک مطالعه عددی در مورد افزایش انتقال گرمای جابه‌جایی در مبدلی به طول L و قطر D، که از دیواره‌های جانبی با شار سرمایشی ثابت q خنک و نانوسیال همگن آلی – فلزی نیکل با دبی ثابت و دما TH وارد و با دما TC خارج شده، انجام شد. نتیجه‌های به‌دست آمده از حل هم‌زمان معادله‌های حاکم برای نانوسیالات، اکسید مس، اکسید آلومینیم، اکسید تیتانیم و آلی– فلزی نیکل نشان داد، با توجه به تفاوت مقدارهای دمای خروجی مبدل، عدد ناسلت و ضریب انتقال گرمای جابه‌جایی متوسط برای نانوسیالات یادشده، با کسر حجمی، دما، سرعت سیال ورودی و شار سرمایشی ثابت؛ دمای خروجی مبدل برای نانوسیال آلی– فلزی نیکل بیش از سایر نانوسیالات کاهش می‌یابد. بررسی تأثیر شار سرمایشی با دما، سرعت و کسر حجمی ثابت نشان داد، با افزایش شار سرمایشی، دمای خروجی کاهش و مشخصه گرمایی مبدل بهینه ولی عدد ناسلت و ضریب انتقال گرمای جابه‌جایی متوسط به دلیل عدم تغییر ابعاد هندسی مبدل ثابت می‌مانند. همچنین، مطالعه تأثیر کسر حجمی با دما، سرعت و شار سرمایشی ثابت نشان داد، با افزایش کسر حجمی، دمای خروجی کاهش و مشخصه گرمایی مبدل بهینه اما عدد ناسلت و ضریب انتقال گرمای جابه‌جایی متوسط، کاهش می‌یابند و درنهایت بررسی تأثیر دمای نانوسیال ورودی مبدلبا کسر حجمی، سرعت سیال ورودی و شار سرمایشی ثابت، نشان داد، با افزایش دمای ورودی، دمای خروجی افزایش یافته ولی عدد ناسلت و ضریب انتقال گرمای جابه‌جایی متوسط به دلیل عدم تغییر ابعاد هندسی مبدل و ثابت می‌مانند.

کلیدواژه‌ها


عنوان مقاله [English]

Improvement of displacement heat transfer of dry cooling towers using organic-metallic nickel nanofluid

[1]. Mohamad Ali, O.Zeitoun, Salem Almotairi, Natural Convection Heat Transfer Inside Vertical Circular Enclosure filled with Water-based Aluminum Oxide Nanofluid, Int. J. Thermal Sci. 63, 115-124,( 2013).
[2]. Manal Hadi, Hayder Ibrahim, Natural Convection of Nanofluid in Cylindrical EnclosureFilled with Porous Media, 20, 20-29, (2013) .
[3]. Moradia, H., Bazooyarm B, Influence of the geometry of cylindrical enclosure on natural convection heat transfer of Newtonian nanofluids, 21, 12-19, (2015).
[4]. Meng, X, Li, Y, Numerical study of natural convection in a horizontal cylinder filled with water-basedalumina nanofluid, Nanoscale Research Letters 31, 111-118, (2015).
[5]. M Guptaa, V Singha, R Kumara, Z. Saidb A review on thermophysical properties of nanofluids and heat transfer applications, Department of Mechanical Engineering, Guru Jambheshwar University of Science & Technology, Hisar, 31, 45-52, (2012).
b Sustainable and Renewable Energy Engineering (SREE), College of Engineering, University of Sharjah, United Arab Emirate, Renewable and Sustainable Energy Reviews 74 , 638–670, (2017).
[6]. S. Nourazar, M. Mohammadpour, Free and forced convectional heat transfer analysis of rectangular porous fin with Differential transformation method, Modares Mechanica Engineering, 17, 393-400, (2017).
[7]. D. Han, W.F. He, F.Z.A. sif, Experimental study of heat transfer enhancement using nanofluid in double tube heat exchanger, Nanjing University of Aeronautics and Astronautics, college of Energy and Power Engineering, Nanjing, 210016, China, Proceedings of the 9th International Conference on Applied Energy, ICAE 2017, 21-24 August 2017, Cardiff, uk, Science Direct Energy procedia 142, 2547-2553, (2017).
[8]. S.b. mousavi, M.M. heyhat, Numerical investigation of convective heat transfer of nanofluid flow over a heated circular cylinder and the effect of thermophysical models,
Modares Mechanical Engineering, Proceedings of the Second International Conference on Air-Conditioning, Heating and Cooling Installations, 16, 123-126, (2016).
[9]. F. razi, S.a. mousavi, A review of the effect of nanofluids to reduce water loss and improve thermal properties in cooling towers, Department of Renewable Energies and Environment,Faculty of New Sciences and Technologies,University of thehran, Tehran, Iranian Journal of Ecohydrology,  5, 1007-1015,(2018).
[10]. G. Sargazi, D. Afzali, N. Daldosso, H. Kazemian, N. Chauhan, Z. Sadeghian, T. Tajerian, A. Ghafarinazari, M. Mozafari, A systematic study on the use of ultrasound energy for the synthesis of nickel–metal organic framework compounds, Ultrasonics sonochemistry, 27 ,395-402, (2015).
[11]. Rao R.V., Patel V.K. Optimization of mechanical draft counter flow wet-cooling tower using artificial bee colony algorithm. Energy Conversion and Management. 52(7), 2611-22, (2011).
[12]. Atarzadeh M.A., Rasouli S, Mehmandoust B. Numerical Analysis the Equations of Heat and Mass Transfer in Cooling Towers. Department of Mechanical Engineering, Islamic Azad University, Khomeini Shahr Branch, Khomeini Shahr, Iran. (2015).
[13]. Alavi SR, Rahmati M. Experimental investigation on thermal performance of natural draft wet cooling towers employing an innovative wind-creator setup. Energy conversion and management. 15; 504-14, (2016).
[14]. Xie X, Zhang Y, He C, Xu T, Zhang B, Chen Q. Bench-Scale Experimental Study on the Heat Transfer Intensification of a Closed Wet Cooling Tower Using Aluminum Oxide Nanofluids. Industrial & Engineering Chemistry Research. 12;56(20):6022-34, (2017).
[15]. Goodarzi, M., Kiasat, M., Influence of nanoparticle immersed in water on Thermal performance of wet cooling tower. 1th tajhizatconf., Tehran, Iran. [Persian]. (2013).
[16]. Imani-Mofrad P, Saeed ZH, Shanbedi M. Experimental investigation of filled bed effect on the thermal performance of a wet cooling tower by using ZnO/water nanofluid. Energy Conversion and Management. 1;127:199-207, (2016).