ساخت و بررسی خواص ساختاری، نوری و فوتوکاتالیستی نانوسیم‌های‌ وانادات بیسموت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشکده علوم پایه، دانشگاه آزاد اسلامی اهواز، اهواز، ایران

2 گروه فیزیک، دانشکده علوم پایه، دانشگاه آزاد اسلامی رامهرمز،رامهرمز، ایران

چکیده

در این پژوهش، نانوسیم‌های وانادات بیسموت (BiVO4) به‌روش حرارتی ساخته ‌شدند. برای مشخصه یابی نانوسیم‌ها از آنالیزهای پراش پرتوی ایکس (XRD)، میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM)، طیف نگاری پراکندگی انرژی ((EDS، طیف سنج تبدیل فوریه مادون قرمز (FTIR) و طیف سنجی جذبی مرئی- فرابنفش (UV-Vis) استفاده شده است. الگوی پراش پرتوی ایکس نشانگر تشکیل فاز تک‌میل برای نانوسیم‌ها است. آنالیزهای EDS و FTIR نشان دادند که نانوسیم‌ها حاوی عنصر ناخالصی نمی‌باشند. از بررسی تصویر FESEM معلوم گردید که متوسط اندازۀ طول و قطر نانوسیم‌ها به ترتیب برابر 3/2 میکرومتر و 83 نانومتر است. از آنالیز UV-Vis شکاف نوری 20/2 الکترون ولت حاصل شد که در محدودۀ نور مرئی است. بررسی فعالیت فوتوکاتالیستی نانوسیم‌های وانادات بیسموت در تجزیۀ رنگ قرمز کنگو نشان داد که نانوسیم‌های وانادات بیسموت کاندیدای مناسبی جهت استفادۀ فوتوکاتالیستی و تجزیۀ مواد آلی به کمک نور خورشید می‌باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesize and study of structural, optical and photocatalytic properties of bismuth vanadate nanowires

نویسندگان [English]

  • Nasrin Ghazkoob 1
  • Masoumeh Naderi 2
1 Department of Physics, Faculty of Basic Sciences, Ahvaz Islamic Azad University, Ahvaz, Iran
2 Department of Physics, Faculty of Basic Sciences, Islamic Azad University of Ramhormoz،, Ramhormoz،, Iran
چکیده [English]

In this research, bismuth vanadate (BiVO4) nanowires were made by hydrothermal method. To study the crystal structure, morphology, optical and photocatalytic properties of the samples, the X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR) and ultraviolet– visible spectroscopy (UV-Vis) were used. The XRD patterns were indicated that the bismuth vanadate nanowires have a monoclinic structure. From EDS and FTIR analysis, it was found that nanowires do not contain impurities. From FESEM image, it was found that the average length and diameter of nanowires are 2.3 micrometers and 83 nanometers, respectively. The UV-Vis analysis was revealed the bismuth vanadate nanowires have an optical gap of 2.20 eV, which is in the visible light range. Investigating the photocatalytic activity of bismuth vanadate nanowires in the photodegradation of Congo red showed that bismuth vanadate nanowires are suitable choice for photocatalytic use and decomposition of organic matter with the help of sunlight.

کلیدواژه‌ها [English]

  • Nanowire
  • Bismuth vanadate
  • Monoclinic
  • Photocatalytic
  • Congo red
[1] L.E. Gomes, L. F. Plaça, W. S. Rosa, R. V. Gonçalves, S. Ullah, H. Wender, Photochem, 2, 866-879, (2022).
[2]  P. Arunachalam, K. Nagai, M. S. Amer, M. A. Ghanem, R. J. Ramalingam,  A. M. Al-Mayouf, Catalysts, 11, 1-27,  (2021).
[3] A. Kudo, K. Omori, H. Kato, Journal of the American Chemical Society, 121, 1459-11467, (1999).
[4] M.H.M. Rodrigues, K. C. M. Borges, A.C.M. Tello, R.A. Roca, R. F. Gonçalves, A. B.F. Silva, E. Longo, M. J. Godinho, Materials Chemistry and Physics, 296, 127198 , (2023).
 [5] L.Wang, X. Shi, Y. Jia, H. Cheng, L. Wang, Q. Wang, Chinese Chemical Letters, 32, 1869-1878, (2021).
[6] A. Malathi, J. Madhavan, M. Ashokkumar, P. Arunachalam, Applied Catalysis A, 555, 47-74, (2018).
[7] V. T. Pham, B. T. T. Dao, H.T. T. Nguyen, N. Q. Tran, D. T. Le Hang, N. D. Trung, T. Lee, L. G. Bach, T. D. Nguyen, Topics in Catalysis, 66, 2–11, (2023).
 [13] M. Imran, A.B. Yousaf, M. Farooq, P. Kasak, International Journal of Hydrogen Energy, 47,  8327-8337, (2022).
[14] Z. Wei, T. Xinyue, W. Xiaomeng, D. Benlin, Z. Lili, X. Jiming, F. Yue,  S. Ni, Z. Fengxia, Chemical  Engineering Journal, 361, 1173-1181, (2019).
[15] W. Li, D. Kong, T. Yan, M. Shi, D. Kong, Y. Feng, Z. Jing,  J. You, Journal of Solid State Chemistry, 286, 121296, (2020).
 [16] H.E.A. Mohamed, B.T. Sone, S. Khamlich, E. Coetsee-Hugo, H.C. Swart, T. Thema, R. Sbiaa, M.S. Dhlamini, Materials Today, 36, 328-335, (2021).
[17] N.D. Van, N.P. Thuy, V.N. Hanh, D.T. Loan, D.B. Vuong, T.T. Thao, H.T. Khuyen, Proceedings, 136, 109136, (2022).
[18] B. Rahimi, A. Ebrahimi, N. Mansouri, N. Hosseini, Global Journal of Environmental Science and Management, 5, 43-60, (2019).
[19] M. M. Sajid, S.Bashir Khan, Y. Javed, N. Amin, Z. Zhang, N. Akhtar Shad,  H. Zhai, Applied Catalysis B: Environmental, 28, 35911-35923, (2021).
[20] D. Karthigaimuthu, S. Ramasundaram, P. Nisha, B. Arjun Kumar, J. Sriram, G. Ramalingam, P. Vijaibharathy, T. Hwan Oh, T. Elangovan, Ecotoxicology and Environmental Safety, 308, 136406, (2022).
 [21] B. Fu, H. Sun, J. Liu, T. Zhou, M. Chen, Z. Cai, D. Hao, X. Zhu, ACS Omega, 7, 26201-26210, (2022).
 [22] N. Ghazkoob, M. Zargar Shoushtari, I. Kazeminezhad, S. M. Lari Baghal, Iranian Journal of Crystallography and Mineralogy (IJCM), 28, 797-806, (2020).
 [23] F. Q. Zhou, J. C. Fan, Q. J. Xu, Y. L. Min, Applied Catalysis B: Environmental, 201, 77-83, (2017).
[24] M. Harja, G. Buema, D. Bucur, Scientific Reports, 12, 6087 (2022).
[25] N. Ghazkoob, M. Zargar Shoushtari, I. Kazeminezhad, S.M. Lari Baghal, Journal of Alloys and Compounds, 900, 163467, (2022).
[26] F. Dong, Q. Wu, J. Ma, Y. Chen, physica status solidi (a), 206, 59-63, (2009).
[27] S. Obregon, G. Colon, Journal of Molecular Catalysis A: Chemical, 376, 40-47, (2013).
 [28]  V. Jayaraman, C. Ayappan, A. Mani, Chemosphere, 287, 132055, (2022).
[29] S. Liu, H. Zhou, G. Dai, W. Wang, Applied Surface Science, 391, 542-547, (2017).
[30] R. Ji, Z. Zhao, X. Yu, M. Chen, Optik, 181, 796-801, (2019).
[31] V.H. Nguyen, Q.T.P. Bui, D.V.N. Vo, K.T. Lim, L.G. Bach,  S.T. Do,  T.V. Nguyen, V.D. Doan,  T.D. Nguyen, T.D. Nguyen, Materials, 12, 1-19, (2019).
[32]  Y. Yang, S. Wan, S. Li, R. Wang, M. Ou, B. Liud,  Q. Zhong, Journal of Materials Chemistry A, 11, 1756-1765, (2023).
[33]  S. Yue, L. Chen, M. Zhang, Z. Liu, T. Chen, M. Xie, Z. Cao, W. Han,  Nano-Micro Letters, 14, 15, (2022).
[34] A. R. Bielinski, A. J. Gayle, S. Lee, N. P. Dasgupta,  ACS Applied. Materials. Interfaces, 13, 52063-52072 , (2021).
 [35] A.M. Umabala, P. Suresh, A.V. Prasada Rao, Journal of Applicable Chemistry, 5,  248-254, (2016).