بررسی نظری پتانسیل نانوچندسازه زیست‌سازگار فولرن-اکسید نیکل در فرایند اکسایش گاز CO و کاهش سمیت ناشی از آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه صنایع شیمیایی، دانشگاه فنی و حرفه‌ای، تهران، ایران

2 گروه مهندسی شیمی، نفت و گاز، دانشگاه فنی و حرفه‌ای، تهران، ایران

چکیده

از آنجاکه سمیت برخی از آلاینده­ های زیست محیطی مانند CO طی فرایندهای اکسایش کاهش می ­یابد، آشکارسازهای دقیق با قدرت بالا که توانایی اکسید کردن گاز نامبرده را داشته باشند، در شناسایی و حذف این آلاینده­ی سمی بسیار کارآمد خواهند بود. اکسیدهای فلزی برای اکسایش CO نیازمند دماهای عملیاتی بسیار بالا بوده که عملاً استفاده از آن­ها را ناممکن و ناایمن می ­کند. بر اساس بررسی­ های انجام شده، پیش ­بینی می ­شود که هیبرید اکسیدهای فلزی و فولرن C60 پتانسیل لازم برای کاتالیست کردن فرایند اکسایش گاز CO و در نتیجه حذف و کاهش سمیت آن ­را خواهند داشت. ترکیبات مبتنی بر مواد کربنی علاوه بر اینکه نسبت به سایر کاتالیست­های اکسایش گازی مقرون به صرفه بوده، نیاز به دمای عملیاتی پایینی داشته و زیست­ سازگار نیز می­ باشند. در این مطالعه، جذب اکسیدهای فلزی Cu2O، ZnO و NiO بر فولرن C60، و سپس، خواص آشکارسازی آلاینده ­ی گازی CO توسط این نانوچندسازه­ ها به­ صورت نظری مطالعه شده است. تمامی محاسبات DFT در این مطالعه با استفاده ازنرم افزار G09، در سطح B97D/6-311G(d,p) انجام شده است. تئوری NBO برای بررسی انتقالات بار و نرم­افزار AIM2000  برای بررسی ماهیت شیمیایی پیوندها استفاده شده ­اند. نتایج بدست آمده از محاسبات نشان می‌دهند که کمپلکس‌های MOx/C60 و به­ویژه NiO/C60 جاذب بسیار قوی‌تری برای CO نسبت به C60 بوده و همچنین، انتظار می ­رود که این کمپلکس­ها از حساسیت نوری و الکتریکی بیشتری در گزینش­پذیری گاز CO برخوردار باشند. افزون بر این، داده ­های حاصل از این پژوهش نشان می ­دهند که نانوچندسازه NiO/C60 پتانسیل لازم برای فرایند اکسایش CO به CO2 را فراهم می ­کند.

کلیدواژه‌ها


عنوان مقاله [English]

Theoretical Study of the potential of Biocompatible Fullerene-Nickel Oxide Nanocomposite in the Oxidation Process of the CO Gas Molecule and Reducing its Toxicity

نویسندگان [English]

  • Sanaz Haghgoo 1
  • maryam barati 2
1 Technical and vocational university
2 technical and vocational university
چکیده [English]

Since the toxicity of some environmental pollutants such as CO decreases during oxidation processes, high-adsorption sensors with the ability of oxidizing this gas are very effectual in detecting and removing it. Metal oxides for oxidation of CO require very high operating temperatures, which makes their use practically impossible and unsafe. According to the investigations, it is predicted that the hybrid of metal oxides and fullerene C60 will have the desired potential to catalyze the oxidation process of CO gas and thus eliminate and reduce its toxicity. Carbon based compounds, in addition to being more cost-effective than other gas oxidation catalysts, require low operating temperatures and are biocompatible. In this study, the adsorption of metal oxides Cu2O, ZnO and NiO on fullerene C60, and also CO sensing properties of these nanocomposites have been theoretically studied. All DFT calculations in this study were performed using G09 software at the B97D/6-311G(d,p) level. NBO theory to analyze charge transfers and AIM2000 software to investigate the chemical nature and strength of bonds have been used. The obtained results from the calculations show that MOx/C60 complexes and especially NiO/C60 are much stronger adsorbent for the CO than the C60 is. It is also expected that these complexes have more optical and electrical sensitivity in the selectivity of the CO gas. In addition, the results of this research show that the NiO/C60 nanocomposite has the necessary potential for the oxidation process of the CO to CO2.

کلیدواژه‌ها [English]

  • Nanocomposite
  • NiO
  • oxidation
  • gas pollutant
[1] J.H. Kim, J.H. Lee, J.Y. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Journal of Hazardous Materials, 376, 68-82, (2019).
[2] R. Jayaratne, P. Thai, B. Christensen, X. Liu, I. Zing, R. Lamont, M. Dunbabin, L. Dawkins, L. Bertrand, L. Morawska, Atmospheric Environment, 245, 118035-1-118035-9, (2021).
[3] L. Hou, C. Zhang, L. Li, C. Du, X. Li, X.F. Kang, W. Chen, Talanta, 188, 41-49, (2018).
[4] S. Arunkumar, T. Hou, Y.B. Kim, B. Choi, S.H. Park, S. Jung, D.W. Lee, Sensors and Actuators B: Chemical, 243, 990-1001, (2017).
[5] H. Takeda, T. Ueda, K. Kamada, K. Matsuo, T. Hyodo, Y. Shimizu, Electrochimica Acta, 155, 8-15, (2015).
[6] W. Zhao, D.W.H. Fam, Z. Yin, T. Sun, H.T. Tan, W. Liu, Q. Yan, Nanotechnology, 23, 425502-1-425502-6, (2012).
[7] E. Salih, A.I. Ayesh, Physica E: Low-dimensional Systems and Nanostructures, 125, 114418-1-114418-11, (2021).
[8] K.I. Hadjiivanov, D.K. Klissurski, Chemical Society Reviews, 25, 61-69, (1996).
[9] W.T. Qiao, G.W. Zhou, X.T. Zhang, T.D. Li, Materials Science and Engineering C, 29, 1498-1502, (2009).
[10] D.L. Jiang, S.Q. Zhang, H.J. Zhao, Journal of Environmental Science and Technology, 41, 303-308, (2007).
[11] T.G. Nenov, S.P. Yordanov, Ceramic Sensors-Technology and Applications, Technomic Publishing, Lancaster, PA, (1996).
[12] H. Meixner, U. Lampe, Sensors and Actuators B: Chemical, 33, 198-202, (1996).
[13] P.T. Moseley, Measurement Science and Technology, 8, 223-237, (1997).
[14] H.S. Yun, K. Miyazawa, I. Honma, H.S. Zhou, M. Kuwabara, Materials Science and Engineering C, 23, 487-494, (2003).
[15] B. Cao, W.J. Cai, Journal of Physical Chemistry C, 112, 680-685, (2008).
[16] Q. Li, V. Kumar, Y. Li, H. Zhang, T.J. Marks, R.P.H. Chang, Chemistry of Materials, 17, 1001-1006, (2005).
[17] S. Zhang, H.S. Chen, K. Matras-Postolek, P. Yang, Physical Chemistry Chemical Physics, 17, 30300-30306, (2015).
[18] M.H. Huang, S. Mao, Science, 292, 1897-1899, (2001).
[19] S.G. Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty, Sensors and Actuators B: Chemical, 221, 1170-1181, (2015).
[20] A. Martínez-Alonso, J.M.D. Tascón, E.J. Bottani, Journal of Physical Chemistry B, 105, 135-139, (2001).
[21] A.M. El Mahdy, Applied Surface Science, 383, 353-366, (2016).
[22] B. Gao, J.X. Zhao, Q.H. Cai, X.G. Wang, X.Z. Wang, Journal of Physical Chemistry A, 115, 9969-9976, (2011).
[23] S. Fukuzumi, In: K.M. Kadish, K. Smith, R. Guilard, The Porphyrin Handbook: Inorganic, organometallic and coordination chemistry, Academic Press, San Diego, (2000).
[24] L. Echegoyen, L.E. Echegoyen, Accounts of chemical research, 31, 593-601, (1998).
[25] S. Fukuzumi, D.M. Guldi, In: V. Balzani (Ed.), Electron Transfer in Chemistry: Electron-Transfer Chemistry of Fullerenes, Wiley-VCH, Weinheim, p. 270 (2001).
[26] S. Fukuzumi, H. Imahori, In: V. Balzani (Ed.), Electron Transfer in Chemistry: Electron-Transfer Chemistry of Fullerenes, Wiley-VCH, Weinheim, p. 927 (2001).
[27] M. Melle-Franco, M. Marcaccio, D. Paolucci, F. Paolucci, V. Georgakilas, D. Guldi, Journal of the American Chemical Society, 126, 1646-1647, (2004).
[28] H. Fu, T. Xu, S. Zhu, Y. Zhu, Journal of Environmental Science and Technology, 42, 8064-8069, (2008).
[29] Z.D. Meng, L. Zhu, J.G. Choi, M.L. Chen, W.C. Oh, Journal of Materials Chemistry, 21, 7596-7603, (2011).
[30] S.B. Lovern, R. Klaper, Environmental Toxicology and Chemistry, 25, 1132-1137, (2006).
[31] S.L. Schroeder, M. Gottfried, Advanced Physical Chemistry Laboratory, 1, 1-22, (2002).
[32] S. Grimme, Journal of computational chemistry, 27, 1787-1799, (2006).
[33] T. Clark, J. Chandrasekhar, G.W. Spitznagel, P.V.R. Schleyer, Journal of computational chemistry, 4, 294-301, (1983).
[34] J.B. Foresman, Æ. Frisch, Exploring chemistry with electronic structure methods: a guide to using Gaussian, Gaussian Inc., Pittsburgh, (1993).
[35] F.B. Van Duijneveldt, J.G. van Duijneveldt-Rijdt, J.H. van Lenthe, Journal of Chemical Reviews, 94, 1873-1885, (1994).
[36] D.W. Schwenke, D.G. Truhlar, Journal of Chemical Physics, 82, 2418-2426, (1985).
[37] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann,O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01, Wallingford CT, (2013).
[38] E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales, F. Weinhold, NBO 5.0, Theoretical Chemistry Institute, University of Wisconsin, Madison WI, (2001).
[39] R. Dennington, T. Keith and J. Millam, GaussView Version 5, Semichem Inc., Shawnee Mission KS, (2009).
[40] F.W. Biegler Konig, J. Schonbohm, D. Bayles, AIM2000, Journal of computational chemistry, 22, 545 (2001).
[41] R.F. Bader, H. Essén, Journal of Chemical Physics, 80, 1943-1960, (1984).
[42] X. Zhao, X. Ren, R. Zhu, Z. Luo, B. Ren, Aquatic Toxicology, 180, 56-70, (2016).
[43] C.T. Ng, L.Q. Yong, M.P. Hande, C.N. Ong, L.E. Yu, B.H. Bay, G.H. Baeg, International journal of nanomedicine, 12, 1621-1637, (2017).
[44] J.C. Lavalley, J. Saussey, T. Rais, Journal of Molecular Catalysis, 17, 289-298, (1982).
[45] C.H. Andersson, Chemistry of Carbon Nanostructures: Functionalization of Carbon Nanotubes and Synthesis of Organometallic Fullerene Derivatives, Doctoral dissertation, Uppsala University, (2011).
[46] I. Grozdanov, Materials Letters, 19, 281-285, (1994).
[47] Z.L. Wang, Journal of Physics Condensed Matter, 16, R829-R858, (2004).
[48] S. Hüfner, J. Osterwalder, T. Riesterer, F. Hulliger, Solid State Communications, 52, 793-796, (1984).
[49] G.A. Sawatzky, J.W. Allen, Physical Review Letters, 53, 2339-2349, (1984).
[50] R. Gillen, J. Robertson, Journal of Physics Condensed Matter, 25, 165502-1-165502-8, (2013).
[51] J.P. Perdew, A. Zunger, Physical Review B, 23, 5048-5079, (1981).
[52] R. Antoine, P. Dugourd, D. Rayane, E. Benichou, M. Broyer, F. Chandezon, C. Guet, Journal of Chemical Physics, 110, 9771-9772, (1999).
[53] V. Dimitrov, S. Sakka, Journal of Applied Physics, 79, 1736-1740, (1996).
[54] A.C. Lasaga, R.T. Cygan, American Mineralogist, 67, 328-334, (1982).
[55] S. Zampolli, I. Elmi, J. Stürmann, S. Nicoletti, L. Dori, G.C. Cardinali, Sensors and Actuators B: Chemical, 105, 400-406, (2005).
[56] B. Bahrami, A. Khodadadi, M. Kazemeini, Y. Mortazavi, Sensors and Actuators B: Chemical, 133, 352-356, (2008).
[57] S. Sarkar, B. Rajbanshi, P. Sarkar, Journal of Applied Physics, 116, 114303-1-114303-7, (2014).
[58] E. Monazami, J.B. McClimon, J. Rondinelli, P. Reinke, ACS Applied Materials & Interfaces, 8, 34854-34862, (2016).
[59] G.A. Polotskaya, D.V. Andreeva, G.K. El’yashevich, Technical Physics Letters, 25, 555-557, (1999).
[60] A.Y. Pulyalina, V.A. Rostovtseva, Z. Pientka, L.V. Vinogradova, G.A. Polotskaya, Petroleum Chemistry, 58, 296-303 (2018).
[61] V.A. Karachevtsev, A.M. Plokhotnichenko, V.A. Pashynska, A.Y. Glamazda, O.M. Vovk, A.M. Rao, Applications of Surface Science, 253, 3062-3065, (2007).
[62] H.B. Lin, J.S. Shih, Sensors and Actuators B: Chemical, 92, 243-254, (2003).
[63] S. Keshtkar, A. Rashidi, M. Kooti, M. Askarieh, S. Pourhashem, E. Ghasemy, N. Izadi, Talanta, 188, 531-539, (2018).