استفاده ازبسپارهای مقلد برپایه نقاط کوانتومی به جای زیست حسگرها

نوع مقاله : مقاله پژوهشی

نویسندگان

آزمایشگاه تحقیقاتی تجزیه نمونه‌های حقیقی، دانشکده شیمی، دانشگاه علم و صنعت ایران، تهران

چکیده

در طبیعت، شناخت مولکولی نقش تعیین کننده­ای در زیست دارد. برای مثال، فعالیت در گیرنده­ها، آنزیم­ها و آنتی بادی­ها را می­توان نام برد. شیمیدان­ها نیز کشف کرده­اند که چگونه سیستم­های تشخیص انتخابی­تر می­تواند بیشتر پیشرفت کند. اگر مانند طبیعت، حفره­ای وجود داشته باشد که شکلی از آن با ماده­ای که در آن قرار داده شده و اتصال می­یابد مطابقت داشته باشد، سایت­ها در یک فضای مکانی مشخص قرار می­گیرند و انتخابی­پذیری مولکول بسیار بالامی­رود. درزیست حسگرها از مواد زیستی مانند آنتی بادی­ها، نوکلئیک اسیدها و آنزیم­ها به عنوان عنصر تشخیصی استفاده می­شود. اما علیرغم انتخابگری بالا، این مواد زیستی بسیار حساس و گران قیمت هستند. به این منظور بسپارهای قالب مولکولی به­عنوان آنتی­بادی مصنوعی برای کاربرد در حسگرها ابداع شده است. دربسپار قالب مولکولی طی یک فرایند نشانه­گذاری مولکولی، ناحیه­هایی با آرایش مولکولی بسیار خاص به درون ماتریس آن وارد می­شود که موجب میل شدید این بسپار به برهمکنش با یک مولکول )الگو( خاص می­شود. نقاط کوانتومی به دلیل نسبت سطح به حجم بالای خود، گزینه­ای مناسب برای  بستر در فناوری قالب­گیری مولکولی هستند. ویژگی نوری ویژه نقاط کوانتومی مانند باریک بودن طیف نشری، پهن بودن طیف تحریک و جذب، پایداری در برابر تابش نور، طول عمر فلورسانس و قابل تنظیم بودن طول موج نشر، موجب برتری این مواد در مقابل رنگینه­های آلی می­شود. در کار پژوهشی، تلفیق انتخابگری بالای پلیمرهای قالب مولکولی با حساسیت بالا و سادگی نقاط کوانتومی برای طراحی پروب­های جدید و ارزان برای انواع مواد مورد استفاده قرار می­گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Using quantum dot-based mimetic substrates instead of biosensors

نویسندگان [English]

  • elahe jabari
  • parizad mohamadnezhad
  • seyed mohamadreza milani hoseini
[1]        R. Schirhagl, “Bioapplications for molecularly imprinted polymers,” Anal. Chem., 86, 250–261, (2014).
 
[2] P.S. Sharma, Z. Iskierko, A. Pietrzyk-Le, F. D’Souza, and W. Kutner, “Bioinspired intelligent molecularly imprinted polymers for chemosensing: A mini review,” Electrochem. commun., 50, 81–87, (2015).
.
[3]        K. Haupt, K. Mosbach, “Plastic antibodies: Developments and applications,” Trends Biotechnol., 16, 11, 468–475, (1998).
[4]        B. Tse Sum Bui and K. Haupt, “Preparation and evaluation of a molecularly imprinted polymer for the selective recognition of testosterone-application to molecularly imprinted sorbent assays,” J. Mol. Recognit., 24, 6, 1123–1129, (2011).
[5]        A. A. Ensafi, N. Kazemifard, and B. Rezaei, “Development of a selective prilocaine optical sensor based on molecularly imprinted shell on CdTe quantum dots,” Sensors Actuators, B Chem., 242,835–841, (2017).
[6]        D.L. Huang et al., “Application of molecularly imprinted polymers in wastewater treatment: a review,” Environ. Sci. Pollut. Res., 22, 963–977, (2014).
[7]        D. Gao, Z. Zhang, M. Wu, C. Xie, G. Guan, and D. Wang, “A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles,” J. Am. Chem. Soc., 129, 7859–7866, (2007).
[8]        G. Díaz-Díaz, D. Antuña-Jiménez, M. Carmen Blanco-López, M. Jesús Lobo-Castañón, A. J. Miranda-Ordieres, and P. Tuñón-Blanco, “New materials for analytical biomimetic assays based on affinity and catalytic receptors prepared by molecular imprinting,” TrAC - Trends Anal. Chem., vol. 33, pp. 68–80, 2012.
[9]        D. S. M. Ribeiro et al., “Synthesis of distinctly thiol-capped CdTe quantum dots under microwave heating: multivariate optimization and characterization,” J. Mater. Sci., 52, 3208–3224, (2017).
[10]      J. Duan, L. Song, and J. Zhan, “One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg 2+ -sensitive properties,” Nano Res., 2, 61–68, (2009).
[11]      D. Zhou et al., “Simple synthesis of highly luminescent water-soluble CdTe quantum dots with controllable surface functionality,” Chem. Mater., 23, 21, 4857–4862, (2011).
[12]      S. Suriyanarayanan, B. Pfeiffer, C. N. Kuzniewski, C. Wullschleger, and K. Altmann, “Chemosensors Based on Molecularly Imprinted Polymers,” Top. Curr. Chem., 286, 1–72, (2009).
[13]      T. T. Makoto Komiyama and H. A. Takashi Mukawa, Molecular Imprinting-From Fundamentals to Applications [Book Review], 19, 12-18, (2003).
[14]      D. R. Kryscio and N. A. Peppas, “Critical review and perspective of macromolecularly imprinted polymers,” Acta Biomater., 8, 461–473, (2012).
[15]      J. Wackerlig and P.A. Lieberzeit, “Molecularly imprinted polymer nanoparticles in chemical sensing - Synthesis, characterisation and application,” Sensors Actuators, B Chem., 207, 144–157, (2015).
[16]      K. Haupt and A.-S. Belmont, “Molecularly Imprinted Polymers as Recognition Elements in Sensors,” in Handbook of Biosensors and Biochips, Chichester, UK: John Wiley & Sons, Ltd, 12, 45-54, (2008).
[17]      X. Wang, J. Zhuang, Q. Peng, and Y. Li, “A general strategy for nanocrystal synthesis,” Nature, 437, 121–124, (2005).
[18]      A. Mujahid, P. A. Lieberzeit, and F. L. Dickert, “Chemical sensors based on molecularly imprinted sol-gel materials,” Materials (Basel)., 3, 2196–2217, (2010).
[19]      S. Pandey and S. B. Mishra, “Sol-gel derived organic-inorganic hybrid materials: Synthesis, characterizations and applications,” J. Sol-Gel Sci. Technol., vol. 59, 73–94, (2011).
[20]      L. Uzun and A.P.F. Turner, “Molecularly-imprinted polymer sensors: Realising their potential,” Biosens. Bioelectron., 76, 131–144, (2016).
 
[21]  Li, S., Ge, Y., Piletsky, S. A., & Lunec, J. (Eds.). Molecularly imprinted sensors: overview and applications. 11, 35-52,58, 2012.
[22]      B. D. Malhotra and A. P. F. Turner, Perspectives in biosensors. JAI Press,12, 34-39, (2003).
[23]      M. Cieplak and W. Kutner, “Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition?,” Trends Biotechnol., 34, 922–941, 2016.
[24]      A.L. Rogach, Semiconductor Nanocrystal Quantum Dots Rogach. 41, 115-120, (2008).
 
[25]      H. Qian, L. Li, and J. Ren, “One-step and rapid synthesis of high quality alloyed quantum dots (CdSe-CdS) in aqueous phase by microwave irradiation with controllable temperature,” Mater. Res. Bull., 40, 1726–1736, (2005).
[26]      J. C. Bruce, N. Revaprasadu, and K. R. Koch, “Cadmium(II) complexes of N,N-diethyl-N′-benzoylthio(seleno)urea as single-source precursors for the preparation of CdS and CdSe nanoparticles,” New J. Chem., 31, 1647–1653, (2007).
[27]      L. Li, H. Qian, and J. Ren, “Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature,” Chem. Commun., 4, 528–530, (2005).
[28]      S. Singh et al., “Easy, one-step synthesis of CdTe quantum dots via microwave irradiation for fingerprinting application,” Mater. Res. Bull., 90, 260–265, (2017).
 
[29]      S. J. Lim et al., “Brightness-equalized quantum dots,” Nat. Commun., 6, 1–10, (2015).
[30]      C. Hao, S. Liu, D. Li, J. Yang, and Y. He, “Sensitive detection of sodium cromoglycate with glutathione-capped CdTe quantum dots as a novel fluorescence probe,” Luminescence, 30, 1112–1118, (2015).
[31]      H. Bao, E. Wang, and S. Dong, “One-Pot Synthesis of CdTe Nanocrystals and Shape Control of Luminescent CdTe–Cystine Nanocomposites,” Small, 2, 476–480, (2006).
[32]      S. Coe, W. K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature, 420, 800–803, (2002).
[33]      Z. Yuan and P. Yang, “Effect of shells on photoluminescence of aqueous CdTe quantum dots,” Mater. Res. Bull., 48, 2640–2647, (2013).
[34]      J. Yang, X. L. Yang, S. H. Yu, X. M. Liu, and Y. T. Qian, “CdTe nanocrystallites with different morphologies and phases by solvothermal process,” Mater. Res. Bull., 35, 1509–1515, (2000).
[35]      B. Guler et al., Targeting and imaging of cancer cells using nanomaterials. Elsevier Inc., 2016.
[36]      J. Yuan, W. Guo, and E. Wang, “Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide,” Anal. Chem., 80, 1141–1145, (2008).
[37] Kuilla, T., et al., “Recent advances in graphene based polymer composites. Progress in polymer science, 35(11): 1350-1375, (2010).
 [38] Y. He, T. Yang, H. Mo, T. Chen, J. Feng, W. Zhang, “Low-cost   potentiometric sensor based on a  molecularly imprinted polymer for the rapid determination of matrine in   herbal medicines”, Instrum. Sci. Technol, 10, 1–16, (2019).
 [39]  Y. Lai, C. Zhang, Y. Deng, G. Yang,   S. Li, C. Tang, N. He, “A novel α- fetoprotein-MIP immunosensor  based on AuNPs/PTh modified glass  carbon electrode”, Chin. Chem, Lett,  30, 160–162, (2019).
[40] B. Maísa Azevedo, "Electrochemical sensors based on molecularly imprinted polymer on nanostructured carbon materials: A review." Journal of Electroanalytical Chemistry , 840, 343–366, (2019).
 
[41] M. Masteri-Farahani, S. Mashhadi-Ramezani, N. Mosleh, Molecularly imprinted polymer containing fluorescent graphene quantum dots as a new fluorescent nanosensor for detection of methamphetamine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy229, 118021, (2020).
[42] L. Cai, , Z. Zhang, , H. Xiao, S. Chen, J. Fu, An eco-friendly imprinted polymer based on graphene quantum dots for fluorescent detection of p-nitroaniline. RSC Advances9 (71), 41383-41391, (2019).
[43] H.R. Ahmadpour, M.R. Milani Hosseini. "A solid-phase luminescence sensor based on molecularly imprinted polymer-CdSeS/ZnS quantum dots for selective extraction and detection of sulfasalazine in biological samples." Talanta 194, 534-541, (2019).
[44] N. Amiri, M.R. Milani Hosseini. "Application of ratiometric fluorescence sensor-based microwave-assisted synthesized CdTe quantum dots and mesoporous structured epitope-imprinted polymers for highly efficient determination of tyrosine phosphopeptide." Analytical Methods 12, 63-72, (2020).
 [45] J. Yuan, W. Guo, and E. Wang, “Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide,” Anal. Chem., 80, 1141–1145, (2008).
[46]      Y. Zhou, S. K. Sharma, Z. Peng, and R. M. Leblanc, “Polymers in carbon dots: A review,” Polymers (Basel)., 9, 67-78, (2017).