مروری بر اثر افزودن نانوذرات بر ویژگی ترموفیزیکی سیالات یونی

نوع مقاله : مقاله پژوهشی

نویسنده

عضو هیئت علمی گروه مهندسی شیمی دانشگاه آزاد اسلامی واحد بروجرد

چکیده

سیالات انتقال حرارت باید دارای پایداری حرارتی بالایی باشند تا بتوان از آنها در دماهای بالا نیز استفاده کرد نانوسیالات یونی دارای خواص منحصر به فردی نسبت به نانوسیالات می باشند که باعث شده گزینه بسیار مناسبی برای سیالات انتقال حرارت باشند. در این مقاله مروری بر اثر اضافه کردن نانوذرات بر هدایت حرارتی سیالات یونی انجام شده همچنین مدلهایی که تاکنون برای اندازه گیری ضریب هدایت حرارتی نانوسیالات ارائه شده، مورد بررسی قرار گرفته است. افزایش غلظت نانوذرات باعث افزایش ضریب هدایت حرارتی می شود اثر افزایش دما بر خواص ترموفیزیکی نانوسیالات یونی بررسی شده به طوری که هدایت حرارتی و ظرفیت گرمایی نانوسیال یونی نسبت به سیال یونی پایه، با افزایش دما، افزایش و ویسکوزیته کاهش می یابد. در برخی مقالات اثر شکل نانو ذرات را در میزان هدایت حرارتی بررسی کردند و نشان داده شده است که نانوذرات غیر کروی باعث ایجاد هدایت حرارتی بیشتری در سیال یونی نسبت به ذرات کروی می شوند.
 

کلیدواژه‌ها


عنوان مقاله [English]

A review of the effect of adding nanoparticles on the thermophysical properties of ionic liquids

[1] Choi SUS. Developments and
applications of Non-Newtonian flows.
ASME FED; 66: 99-105(1995).
[2] H. Chen, Y. He, J. Zhu, H. Alias, Y.
Ding, P. Nancarrow, C. Hardacre, D.
Rooney, C.Tan, Rheological and heat
transfer behaviour of the ionic liquid
[C4mim] [NTf2], Int. J. Heat Fluid Flow 29
149–155, (2008).
[3] A.P. Froba, M.H. Rausch, K.
Krzeminski, D. Assenbaum, P.
Wasserscheid, A.Leipertz, Thermal
conductivity of ionic liquids: measurement
and prediction,Int. J. Thermophys. 31
2059–2077, (2010).
[4] K.Y.Leong a,n, HwaiChyuanOng b,
N.H.Amer a, M.J.Norazrina c, M.S.Risby a,
K.Z. KuAhmad, An overview on current
application of nanofluids in solar thermal
collector and itschallenges,
RenewableandSustainableEnergyReviews5
3,1092–1105,(2016).
[5] AanalysisMeseret Amdea,b, Zhi-Qiang
Tana, Rui Liua, Jing-Fu Liu, Nanofluid of
zinc oxide nanoparticles in ionic liquid for
single dropliquid microextraction of
fungicides in environmental waters prior
tohigh performance liquid chromatographic
analysis, Journal of Chromatography
A(2015).
[6] Titan C. Paula, A.K.M. M. Morshedb,
Jamil A. Khan, Effect of nanoparticle
dispersion on thermophysical properties of
ionic liquids for its potential application in
solar collector, Procedia Engineering 90,
643 – 648, (2014 )
[7] A.P.C. Ribeiro, M.J.V. Lourenço, C.A.
Nieto de Castro, Thermal conductivity of
ionanofluids, 7th Symp. Thermophysical
Properties, Boulder, USA,6, 21–26. (2009).
[8] C.A. Nieto de Castro, M.J.V.
Lourenco, A.P.C. Ribeiro, E. Langa, S.I.C.
Vieira, Thermal properties of ionic liquids
and ionanofluids of imidazolium and
pyrrolidinium liquids, J. Chem. Eng. Data
55 (2), 653–661, (2010).
[9] C.A. Nieto de Castro, S.M.S.
Murshed,M.J.V. Lourenço, F.J.V. Santos,
M.L.M. Lopes, Enhanced
thermal conductivity and specific heat
capacity of carbon nanotubes
ionanofluids, Int. J. Therm. Sci. 62, 34–39,
(2012).
[10] A.P.C. Ribeiro, S. I. C. Vieira, J. M.
França, C. S. Queirَ s, E. Langa, Thermal
Properties of Ionic Liquids and
Ionanofluids,78,120-128, (2010).
[11] C.A. Nieto de Castro*, S.M.S.
Murshed, M.J.V. Lourenço, Enhanced
thermal conductivity and specific heat
capacity of carbon nanotubes ionanofluids,
International Journal of Thermal Sciences
62, 34-39, (2012).
[12] C.A. Nieto de Castro*, S.M.S.
Murshed, M.J.V. Lourenço, Enhanced
thermal conductivity and specific heat
capacity of carbon nanotubes ionanofluids,
International Journal of Thermal Sciences
62, 34-39, (2012).
[13] J. M. P. França, S. I. C. Vieira, M. J.
V. Lourenço, Thermal Conductivity of
[C4mim][(CF3SO2)2N] and
[C2mim][EtSO4] and Their IoNanofluids
with Carbon Nanotubes: Experiment and
Theory,journal of chemical &engineering
data,14, 78-85, (2013)
[14] S.M.S. Murshed, C.A. Nieto de
Castro, M.J.V Lourenço, J. Nanofluids, 1
,175–179, (2012).
[15] Baogang Wang , Xiaobo Wang ,
Wenjing Lou, Ionic liquid-based stable
nanofluids containing gold nanoparticles,
Journal of Colloid and Interface Science
362, 5–14, (2011).
[16] Elise B. Fox, Ann E. Visser, Nicholas
J. Bridges, Thermophysical Properties of
Nanoparticle-Enhanced Ionic Liquids
(NEILs) Heat-Transfer Fluids, Energy Fuel,
47, 85-96, (2013).
[17] Titan C.Paul,AKM Morshed,
Nanoparticle enhanced ionic
liquids(NEILS)as working fluid for the
next generation solar collector, Procedia
Engineering 56, 631 – 636, ( 2013 ).
[18] J.M.P. França , F. Reis , S.I.C. Vieira,
Thermophysical properties of ionic liquid
dicyanamide (DCA) nanosystems, J. Chem.
Thermodynamics 79, 248–257, (2014).
[19] Nieto de Castro, C. A.; Lourenço, M.
J. V.; Ribeiro, A. P. C.; Langa, E.; Vieira,
S. I. C. Thermal Properties of Ionic Liquids
and IoNanofluids of Imidazolinium and
Pyrrolinium Liquids. J. Chem. Eng.Data
55, 653−661, (2010).
[20] Jian Liu, Fuxian Wang, Long Zhang,
Xiaoming Fang, Zhengguo Zhang;
Thermodynamic properties and thermal
stability of ionic liquid-based nanofluids
containing graphene as advanced heat
transfer fluids for medium-to-hightemperature applications. Renewable
Energy 63, 519-523, (2014)
[21] Titan C. Paula, A.K.M. M. Morshedb,
Jamil A. Khana, Effect of nanoparticle
dispersion on thermophysical properties of
ionic liquids for its potential application in
solar collector, Procedia Engineering ,90
643 – 648, (2014 ).
[22] Fuxian Wang1, Lijuan Han1,
Zhengguo Zhang1*, Xiaoming Fang1,
Surfactant-free ionic liquid-based
nanofluids with remarkable thermal
conductivity enhancement atvery low
loading of graphene, Nanoscale Research
Letters 7, 314-320, (2012).
[23] A.G.M. Ferreira, P.N. Simões, A.F.
Ferreira, M.A. Fonseca, M.S.A. Oliveira,
A. Trino, Transport and thermal properties
of quaternary phosphonium ionic liquids
and IoNanofluids, J. Chem.
Thermodynamics. (2013)
[24] Titan C. Paul a, A.K.M.M. Morshed b,
Elise B. Fox c, Jamil A. Khan, Enhanced
thermophysical properties of NEILs as heat
transfer fluids for solar thermal application,
Applied Thermal Engineering 110, 1–9,
(2017).
[25] Hua Xie,Zongchang Zhao,Jianhua
Zhao,Measurment of thermal conductivity
,viscosity and density of ionic
liquid[EMIM][DEP]-based
nanofluids,Chinese journal of chemical
engineering 24, 331-338, (2016).
[26] Maxwell JC , A treatise on electricity
and magnetism. Clarendon Press, Oxford,
(1873).
[27] Hamilton RL, Crosser OK , Thermal
conductivity of heterogeneous twocomponent systems. Ind Eng Chem 1,187–
191,(1962).
[28] Bhattacharya P, Saha SK, Yadav A,
Phelan PE, Prasher RS ,Brownian
dynamics simulation to determine the
effective thermal conductivity of
nanofluids. J Appl Phys 95, 6492–6494,
(2004).
[29] Einstein A ,Investigation on the theory
of Brownian movement. Dover, New York,
(1956).
[30] Jang SP, Choi SUS ,Role of Brownian
motion in the enhanced thermal
conductivity of nanofluids. Appl Phys Lett
84,4316–4318,(2004).
[31] Koo J, Kleinstreuer C, A new thermal
conductivity model for nanofluids. J
Nanopart Res 6, 577–588, (2004).
[32] Prasher R, Phelan PE, Bhattacharya P
,Effect of aggregation kinetics on the
thermal conductivity of nanoscale colloidal
solutions (nanofluid). Nano Lett 6, 1529–
1534, (2006).
[33] Evans W, Prasher R, Fish J, Meakin
P, Phelan P, Keblinski P ,Effect of
aggregation and interfacial thermal
resistance on thermal conductivity of
nanocomposites and colloidal nanofluids.
Int J Heat Mass Transf 51, 1431–
1438,(2008).
[34] Xuan Y, Li Q, Hu W ,Aggregation
structure and thermal conductivity of
nanofluids. AIChE J 49, 1038–1043,
(2003).
[35] Yu C-J, Richter AG, Datta A, Durbin
MK, Dutta P ,Observation of molecular
layering in thin liquid films using Xray
reflectivity. Phys Rev Lett 82, 2326–2329,
(1999).
[36] Y. Feng, B. Yu, P. Xu, M. Zou, The
effective thermal conductivity of nanofluids
based on the nanolayer and the aggregation
of nanoparticles, Journal of Physics D:
Applied Physics 40, 3164-3171, (2007).
[37] Yu W, Choi SUS, The role of
interfacial layers in the enhanced thermal
conductivity of nanofluids: a renovated
Hamilton– Crosser model. J Nanopart Res
6, 355–361,(2004).
[38] H. Xie, M. Fujii, X. Zhang, Effect of
interfacial nanolayer on the effective
thermal conductivity of nanoparticle-fluid
mixture, Int. Journal of Heat and Mass
Transfer 48, 2926-2932, (2005).
[39] Li CH, Williams W, Buongiorno J, Hu
LW, Peterson GP, Transient and steadystate experimental comparison study of
effective thermal conductivity of
Al2O3/water nanofluids. J Heat Transf 130,
86-98, (2008).