مروری بر نسل جدید سلول‌های خورشیدی: سلول‌های خورشیدی پرواسکایت و سلول‌های خورشیدی حساس شده با نقاط کوانتومی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی برق، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد

چکیده

در نسل سوم سلول‌های خورشیدی، محلول‌ مواد آلی و غیر آلی پرواسکایت توجه زیادی را به عنوان یک محصول سبک برای سلول‌های خورشیدی به خود جلب کرده است. برخلاف صفحات سیلیکونی، صفحات پرواسکایت را می‌توان با مصرف انرژی کم، بدون نیاز به تجهیزات پیچیده و تنها در چند مرحله تولید کرد. همچنین در سال های اخیر سلول‌های خورشیدی نقطه کوانتومی کلوئیدی پتانسیل بالایی برای تبدیل شدن به یک منبع انرژی کارآمد و سبک برای دستگاه‌های الکترونیکی دارند. برای دستیابی به سلول‌های خورشیدی انعطاف‌پذیر و پربازده نقاط کوانتومی کلوئیدی، لایة انتقال الکترون ETL که الکترون‌ها را از لایة جامد نقاط کوانتومی کلوئیدی استخراج می‌کند، باید در دمای پایین پردازش شود و همچنین بازترکیب بین لایه‌ها باید از بین برود. استفاده از نقاط کوانتومی در طراحی و ساخت سلول‌های خورشیدی موجب بازدهی بالا، هزینه کم، پایداری بالا، پردازش-پذیری و سازگاری و انعطاف‌پذیری این سلول‌ها با محیط زیست می‌شوند؛ برای توسعه افزاره های خورشیدی با عملکرد بالا، مسائل زیادی وجود دارند که احتیاج به عنوان کردن بر مبنای تجاری سازی سلول های خورشیدی پرواسکایت هست. در این مقاله پیشرفت های مختلفی در زمینه سلول های خورشیدی پرواسکایت و سلول های خورشیدی نقطه کوانتومی مرور شده است و چالش های مختلف و خواص سلول های خورشیدی پرواسکایت و سلول های خورشیدی نقطه کوانتومی بررسی شده است.
 

کلیدواژه‌ها


[1] F. Lewis, P. Larry, Solar Cells and Their Applications, Second Edition, John Wiley & Sons, Inc.,(2010).
[2] P.wurfel ,Physics of solar cells, 3rd Edition,Wiely,(2016).
[3] K.Mokhtari, S.Salem, A.T.Damanabi “Different generation solar cell technologies (evaluation and comparison) ". Journal of Renewable and New Energy, 2, 45-56, (2017).
[4] A.Ehtesham, W.Wong, H.Y.Wong, M.Zamani. “Recent Advances in Fabrication Techniques of Perovskite Solar Cells, ”American Journal of Applied Sciences, 13, 1290, (2016).
[5]  N. Kour, R. Mehra.  “Recent Advances in Photovoltaic Technology based on Perovskite Solar Cell- A Review.”  International Research Journal of Engineering and Technology (IRJET), 04, 1284, ( 2017).
[6] H.Chen, D.Liu, Y.Wang, Ch.Wang, T.Zhang, P.Zhang, H.Sarvari, Zh.Chen, Sh.Li. “Enhanced Performance of planar Perovskite Solar Cells Using Low- Temperature Solution- Processed Al- Doped SnO2 as Electron Transport Layer. ” springer, 10, 1186, (2017).
[7] S.Sahaia, A. Ikrama, S. Raia, R. Shrivastavb, S. Dassb, V. R. Satsangia, “ Quantum dots sensitization for photoelectrochemical generation of hydrogen: A review, Elsevier Renewable and Sustainable Energy Reviews, 68, 19-27,(2017).
[8] Y.C Tsai, M.Y Lee, Y.Li, S. Samukawa. “Design and Simulation of Intermediate Band Solar Cell With Ultradense Type-II Multilayer Ge/Si Quantum Dot Superlattice.” IEEE Transaction On Electron Devices, 64, 4567, (2017).
[9] Z.Wang, et al. “ Enhancement of charge transport in quantum dots solar cells by N-butylamine-assisted sulfur-crosslinking of PbS quantum dots.” Elsevier Solar Energy, 174, 399-408, 2018).)
[10] M.Kouhnavard, S.Ikeda, N.A.Ludin, B.V.Ghaffari. A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Elsevier  Renewable and Sustainable Energy Reviews, 37, 397-407, (2014).
[11] B. O’regan, M. Grätzel, A low-cost, highefficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, Vol. 353, No. 6346, pp. 737-740, (1991).
[12] C. Raj, R.Prasanth. “ A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells". J Power Sources, 317, 32-120,(2016).
[13] J. Bouclé, P. Ravirajan, J. Nelson, Hybrid polymer–metal oxide thin films for photovoltaic applications, Journal of Materials Chemistry, Vol. 17, pp. 3141-3153, (2007).
[14] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.- Q. Nguyen, M. Dante, A. J. Heeger, Efficient tandem polymer solar cells fabricated by allsolution processing, Science, Vol. 317, , pp. 222-225, (2007).
[15] X. Wu, “High-efficiency polycrystalline CdTe thin-film solar cells”, Sol. Energy, Vol.77, pp. 803-814, 2010).)
[16] G. Zheng, L. Xu, M. Lai, Y. Chen, L. Liu, X. Li, “Enhancement of optical absorption in amorphous silicon thin film solar cells with periodical nanorods to increase optical path length”, Sol. Energy, Vol.63, pp. 690-701, (2012).
[17] A. Romeo, M. Terheggen, D. Abou-Ras, D. Ba¨tzner, F. Haug, M. Ka¨lin, D. Rudmann, A. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells progress in photovoltaic: research and applications”, Prog. Photovolt. Res. Appl, Vol.12, pp.93-111, (2004).
[18] S.K.Lee, H.G.Jeong. , “Improvement in CIGS solar cell efficiency using a micro-prism array integrated with sub-wavelength structures”, 186, 254-258, 2018).)
[19]  J.Wu, Z.M.Wang, “ Lecture Notes in Nanoscale Science and Technology”, springer, 15, 399, (2014).
[20] A. Varghese et al., “Complete voltage recovery in quantum dot solar cells due to suppression of electron capture,” Nanoscale, vol. 8, pp. 7248–7256,(2016).
[21] L.Etgar. , “ Hole Conductor Free Perovskite-based Solar Cells,” Springer, 3rd Edition, (2016).
[22] S.Wahid, M.Islam, S.S.Rahman, K.Alam, “Transfer Matrix Formalism-Based Analytical Modeling and Performance Evaluation of Perovskite Solar Cells,”IEEE Transaction On Elecron Devices, 18, 83-91, (2017).
[23] H. Tang, S. He, C. Peng. “A Short Progress Report on High-Efficiency Perovskite Solar Cells.” Nanoscale Research Letters, 12, 410, (2017).
[24] M. A. Green, A.H.Baillie. “Perovskite Solar Cells: The Birth of a New Era in Photovoltaics.” ACS Energy Lett., 2, 822, (2017).
[25] H. Topsöe. “ Crystallographic-Chemical Investigations of Homologous Compounds. Z. Kristallogr.” 18, 246, (1884).
[26] C.K.Moller, “Crystal Structure and Photoconductivity of Cæsium Plumbohalides”, Nature 182, 1436, (1958).
[27] D. Weber, “CH3NH3PbX3 , a Pb(II)-System with Cubic Perovskite Structure ” , Inst. Anorg. Chem. Univ. Stutt. 33b, 1443, (1978).
[28] K. W. J  Barnham, , G.Duggan. “ A new approach to high-efficiency multi-band-gap solar cells”, Journal of Applied Physics , 67, 3940, (1990).
[29] R. Schaller, V. Klimov. “High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion.” Physical Review Letters, 92, 186601,(2004).
[30] A. Kojima, K. Teshima, T. Miyasaka, Y. Shirai, ECS, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”,210th Proc ECSMeeting, (2006).
[31] B.Li, Y.Li, Ch.Zheng, D.Gao, W.Huang. “Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches” 6, 38079, (2016).
[32] J. Tang, X.Wang, L. Brzozowski, D. Barkhouse, R. Debnath , L.  Levina. “ Schottky quantum dot solar cells stable in air under solar illumination.”  Adv Mater, 22, 1398, (2010).
[33] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park “6.5% efficient perovskite quantumdot-sensitized solar cell”, Nanoscale 3, 4088, (2011).
[34] H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Mar-chioro, S.J. Moon, R. HumphryBaker, J.H. Yum, J.E. Moser,M. Gratzel, N.G. Park, “Lead iodide perovskite sensitized all-solidstate submicron thin film mesoscopic solar cell with efficiency exceeding 9%.” Scientific Reports. 2, 591, (2012).
[35] M. A. Hossain, R. J. James, C. Shen, P. H. Jia, Z.Y.Koh , M..N.Mathew.  “  CdSe-sensitized mesoscopic TiO2 solar cells exhibiting 5% efficiency: redundancy of CdS buffer layer ”. J Mater Chem,  22, 1623542, (2012).
[36] J. W. Lee , D. Y. Son , T. K. Ahn , H. W. Shin, I. Y.  Kim , S. J. Hwang. “Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent.”  Sci Rep , 3, 1050, (2013).
[37] J.J.Tian, Q.F Zhang, E. Uchaker, Z.Q  Liang, R. Gao, X.H.Qu. “ Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells.” J Mater Chem, 1, 67705, (2013).
[38] X.Tong, F.Line, J.Wu, Zh.Wang. “High Performance Perovskite Solar Cells ” Advanced science , 3 , 1500201, (2016).
[39] W. S. Yang , J. H. Noh , N. J. Jeon , Y. C. Kim , S. Ryu , J. Seo , S. I. Seok , Science 348 , 1234, (2015).  
[40] Y. Yang, W.Wang.  “Effects of incorporating PbS quantum dots in perovskite solar cells based on CH 3NH3 PbI.”. Journal of Power Sources ,293, 84, (2015).
[41] Z.Yang, A.Janmohamed, X.Lan, F. P. García, O.Voznyy, E.Yassitepe. “Colloidal quantum dot photovoltaics enhanced by Perovskite shelling”. Nano Lett, 15, 39, (2015).
[42] M. K. Nazeeruddin. “ In retrospect: twenty-five years of low-cost solar cells”. Nature 538, 463, (2016).
[43] W. J.  Yin, J. H. Yang, J.Kang , Y.Yan, S. H. Wei. “Halide perovskite materials for solar cells: a theoretical review. ” J Mater Chem A,  3, 8926, (2015).
[44]  O.Ergen, S. M. Gilbert, T.Pham, S. J. Turner, M. T. Z.Tan, M. S. Worsley, S.Zettl. “Graded bandgap perovskite solar cells”. Nat Mater, 16,522, (2017).
[45] M.Hatamvand, A.Mirjalily, A.Behjat, M.Jabbari. “Fabrication parameters of low- temperature TiO2- based hole- transport- free perovskite solar cells. ” optic- international journal, (2017).
[46]  Z. Ahmada, M. A.. Najeeba, R.A. Shakoora ,  A. Al-Muhtasebb , F. Touatic.  “Limits and possible solutions in quantum dot organic solar cells.”( Elsevier) Renewable and Sustainable Energy Reviews, 321, 1364, (2017).
[47] M. Ye, X. Gao, X. Hong, Q. Liu, C. He, X. Liu, C. Lin. “Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes. ” Sustainable Energy Fuels, 3, 1039, (2017).
[48] Z.Peng, et al.” Improving on the interparticle connection for performance enhancement of flexible quantum dot sensitized solar cells.” Materials Research Bulletin, 39, 10-16, (2018).
[49] M.Yu, et al.” Diarylfluorene-based nano-molecules as dopant-free hole-transporting materials without post-treatment process for flexible p-i-n type perovskite solar cells
.” Elsevier Nano Energy, 46, 241-248, (2018).
[50] Q.Chen, et al.” Fabrication and Characterization of TiO2 Nanotubes Sensitized with PbS Quantum Dots–CH3NH3PbI3 Heterostructures as Photoanodes with Liquid Electrolyte.” Elsevier Materials Letters, 16, (2018).
[51] Z. Zhou, J.Ma, Z.Wang, C.Mu, Z.Fan, L.Du, Y.Bai, L.Fan, H.Yan, D.L. Philips, S.Yang. “Efficiency Enhancement of Perovskite Solar Cells through Fast Electron Extraction: The Role of Graphene Quantum Dots.” Journal Of The American Chemical Society, 136, 3760, (2014).
[52] W.C. Lai, K.W. Lin, T.F.Guo, J. Lee.  “Perovskite-Based Solar Cells With Nickel-Oxidized Nickel Oxide Hole Transfer Layer. ” IEEE Transaction On Electron Devices , 62, 1590, (2015).
[53] J. Du, Z. Du, J.S.Hu, Z. Pan, Q. Shen, J.Sun. “Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. ” J Am Chem Soc, 138, 4201, (2016).
[54] Y. Li, Dr. W. Sun, Dr. W. Yan, S. Ye, H. Rao, Z. Zhao, Z. Bian, Z. Liu, C. Huang. “50% Sn-Based Planar Perovskite Solar Cell with Power Conversion Efficiency up to 13.6%.”Wiley Advanced Energy Materials, 160, 1353 , (2016).
[55] Y.Wu,et al. “ Perovskite solar cells with 18.21% e‑ciency and area over 1 cm2 fabricated by heterojunction engineering.” Nature Energy, 148, 130-137, (2016).
[56] X. Zhang, P. K. Santra, L. Tian,, M. B. Johansson, H. Rensmo, E. M. J. Johansson. “Highly Efficient Flexible Colloidal Quantum Dot Solar Cells with Improved Electron Extraction Using MgZnO Nanocrystals. ” Acs Nano , 11, 8478, (2017).
[57]A.R.Marshall, et al. ” Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells.” Science Advances,3, 1-8, (2017).
[58] I.M.Tang, et al. “ Fabrication of solar cells made with CuInTe2xSex quantum dots sensitized hierarchical TiO2 sphere having a CuS counter electrode: Dependence on the Te/Se ratio.”Elsevier Materials Letters, 199, 41-45, (2017).
[59] G.H.Bart, et al. “ Improved efficiency of NiOx-based p-i-n perovskite solar cells by using PTEG-1 as electron transport layer.” Apl Materials, 5, 31-36, (2017).
[60] L.Zhang, et al. ” Copper deficient Zn−Cu−In−Se quantum dot sensitized solar cells for high efficiency.” Journal of Materials Chemistry,39,24-31, (2017).