سلولز نانوفیبریله شده؛ بررسی تولید، ویژگی ها و کاربرد

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

 اخیراً استفاده از مواد جدید به‌دست آمده از منابع تجدید پذیر و سازگار با محیط زیست، بسیار مورد توجه قرار گرفته است. سلولز نانوفیبریله شده از جمله ‏موادی است که به لحاظ دارا بودن ویژگی‌هایی همچون تجدیدپذیری، زیست تخریب پذیری، سطح ویژه و نسبت منظر زیاد، مورد توجه محققان می ‏باشد. این نانو ماده عمدتاً با اعمال تیمار مکانیکی بسیار شدید به یک سوسپانسیون خمیری، تهیه می‌شود. پالایش و همگن‌سازی، میکروفلودایز کردن، ‏آسیاب، خرد کردن سرمایی و روش فراصوتی با شدت زیاد از مهم‌ترین روش های تولید آن می باشند. مشکل اصلی تولید نانوالیاف سلولزی توسط این ‏فرآیندها، مصرف انرژی زیاد می باشد. از جمله روش های رفع این مشکل، استفاده از پیش تیمار، قبل از اعمال تیمار مکانیکی می باشد. مهم‌ترین روش-‏های پیش تیمار شامل پالایش مکانیکی، اکسایش با واسطه 2-2-6-6- تترا متیل پیپریدین- 1- اکسیل (‏TEMPO‏)‏ ، پیش تیمار قلیایی- اسیدی، ‏پیش تیمار آنزیمی و مایعات یونی می‌باشند. از موارد استفاده این نانو ماده می‌توان به کاربرد در نانوکامپوزیت‌ها، عامل مقاومت سطحی، ایجاد پایداری در ‏سوسپانسیون‌ها و تهیه کاغذهای ترکیبی اشاره نمود. ‏

کلیدواژه‌ها


Abdul Khalil, H., A. Bhat, and A. Ireana Yusra, Green composites from sustainable cellulose nanofibrils: a review. Carbohydrate Polymers, 2012. 87(2): p. 963-979. 2. Khalil, H., N. Aprilia, A. Bhat, M. Jawaid, M. Paridah, and D. Rudi, A Jatropha biomass as renewable materials for biocomposites and its applications. Renewable and Sustainable Energy Reviews, 2013. 22: p. 667-685. 3. Henriksson, M. and L.A. Berglund, Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. Journal of Applied Polymer Science, 2007. 106(4): p. 2817-2824. 4. Ahola, S., J. Salmi, L.-S. Johansson, J. Laine, and M. ?sterberg, Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules, 2008. 9(4): p. 1273-1282. 5. Ding, S.-Y. and M.E. Himmel, The maize primary cell wall microfibril: a new model derived from direct visualization. Journal of Agricultural and Food Chemistry, 2006. 54(3): p. 597-606. 6. Lavoine, N., I. Desloges, A. Dufresne, and J. Bras, Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review. Carbohydrate polymers, 2012. 90(2): p. 735-764. 7. Missoum, K., M.N. Belgacem, and J. Bras, Nanofibrillated cellulose surface modification: A review. Materials, 2013. 6(5): p. 1745-1766. 8. Taipale, T., M. ?sterberg, A. Nyk?nen, J. Ruokolainen, and J. Laine, Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose, 2010. 17(5): p. 1005-1020. 9. Kalia, S., S. Boufi, A. Celli, and S. Kango, Nanofibrillated cellulose: surface modification and potential applications. Colloid and Polymer Science, 2014. 292(1): p. 5-31. 10. Müller, R., C. Jacobs, and O. Kayser, Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Advanced drug delivery reviews, 2001. 47(1): p. 3-19. 11. Bhatnagar, A. and M. Sain, Processing of cellulose nanofiber-reinforced composites. Journal of Reinforced Plastics and Composites, 2005. 24(12): p. 1259-1268. 12. Zimmermann, T., N. Bordeanu, and E. Strub, Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers, 2010. 79(4): p. 1086-1093. 13. Aulin, C., J. Netrval, L. W?gberg, and T. Lindstr?m, Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter, 2010. 6(14): p. 3298-3305. 14. Abe, K., S. Iwamoto, and H. Yano, Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules, 2007. 8(10): p. 3276-3278. 15. Frone, A.N., D.M. Panaitescu, and D. Donescu, Some aspects concerning the isolation of cellulose micro-and nano-fibers. UPB Buletin Stiintific, Series B: Chemistry and Materials Science, 2011. 73(2): p. 133-152. 16. Sir?, I. and D. Plackett, Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 2010. 17(3): p. 459-494. 17. Wang, B. and M. Sain, Dispersion of soybean stock?based nanofiber in a plastic matrix. Polymer International, 2007. 56(4): p. 538-546. 18. Wang, B. and M. Sain, Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Composites Science and Technology, 2007. 67(11): p. 2521-2527. 19. Cheng, Q., S. Wang, and T.G. Rials, Poly (vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Composites Part A: Applied Science and Manufacturing, 2009. 40(2): p. 218-224. 20. Chen, P., H. Yu, Y. Liu, W. Chen, X. Wang, and M. Ouyang, Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose, 2013. 20(1): p. 149-157. 21. Wang, S. and Q. Cheng, A novel process to isolate fibrils from cellulose fibers by high?intensity ultrasonication, Part 1: Process optimization. Journal of applied polymer science, 2009. 113(2): p. 1270-1275. 22. Qing, Y., R. Sabo, J. Zhu, U. Agarwal, Z. Cai, and Y. Wu, A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydrate polymers, 2013. 97(1): p. 226-234. 23. Spence, K.L., R.A. Venditti, O.J. Rojas, Y. Habibi, and J.J. Pawlak, A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose, 2011. 18(4): p. 1097-1111. 24. Aulin, C., M. G?llstedt, and T. Lindstr?m, Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose, 2010. 17(3): p. 559-574. 25. Donaldson, L., Cellulose microfibril aggregates and their size variation with cell wall type. Wood science and technology, 2007. 41(5): p. 443-460. 26. Taniguchi, T. and K. Okamura, New films produced from microfibrillated natural fibres. Polymer International, 1998. 47(3): p. 291-294. 27. Eriksen, O., K. Syverud, and O. Gregersen, The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nordic Pulp & Paper Research Journal, 2008. 23(3): p. 299-304. 28. Ankerfors, M. and T. Lindstr?m. On the manufacture and use of nanocellulose. in 9th International Conference on wood & biofiber plastic composites, Madison, WI (USA). 2007. 29. Plackett, D. and M. Iotti, Preparation of Nanofibrillated Cellulose and Cellulose Whiskers. Biopolymer Nanocomposites: Processing, Properties, and Applications, 2013: p. 309-338. 30. P??kk?, M., J. Vapaavuori, R. Silvennoinen, H. Kosonen, M. Ankerfors, T. Lindstr?m, L.A. Berglund, and O. Ikkala, Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter, 2008. 4(12): p. 2492-2499. 31. Stelte, W. and A.R. Sanadi, Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Industrial & engineering chemistry research, 2009. 48(24): p. 11211-11219. 32. Andresen, M., L.-S. Johansson, B.S. Tanem, and P. Stenius, Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose, 2006. 13(6): p. 665-677. 33. Iwamoto, S., A. Isogai, and T. Iwata, Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules, 2011. 12(3): p. 831-836. 34. Saito, T., M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi, L. Heux, and A. Isogai, Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules, 2009. 10(7): p. 1992-1996. 35. Henriksson, M., G. Henriksson, L. Berglund, and T. Lindstr?m, An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal, 2007. 43(8): p. 3434-3441. 36. Alemdar, A. and M. Sain, Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresource technology, 2008. 99(6): p. 1664-1671. 37. Wang, B. and M. Sain, The effect of chemically coated nanofiber reinforcement on biopolymer based nanocomposites. BioResources, 2007. 2(3): p. 371-388. 38. Wang, B., M. Sain, and K. Oksman, Study of structural morphology of hemp fiber from the micro to the nanoscale. Applied Composite Materials, 2007. 14(2): p. 89-103. 39. Janardhnan, S., & Sain, M, Isolation of cellulose microfibrils – An enzymathic approach. Bioresources, 2006. 1: p. 176–188. 40. K?pcke, V., Improvement on cellulose accessibility and reactivity of different wood pulps. 2008. 41. Tanpichai, S., F. Quero, M. Nogi, H. Yano, R.J. Young, T. Lindstro?m, W.W. Sampson, and S.J. Eichhorn, Effective Young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules, 2012. 13(5): p. 1340-1349. 42. Svagan, A.J., M.A. Azizi Samir, and L.A. Berglund, Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules, 2007. 8(8): p. 2556-2563. 43. Siddiqui, N., R.H. Mills, D.J. Gardner, and D. Bousfield, Production and characterization of cellulose nanofibers from wood pulp. Journal of Adhesion Science and Technology, 2011. 25(6-7): p. 709-721. 44. P??kk?, M., M. Ankerfors, H. Kosonen, A. Nyk?nen, S. Ahola, M. ?sterberg, J. Ruokolainen, J. Laine, P. Larsson, and O. Ikkala, Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 2007. 8(6): p. 1934-1941. 45. Zhu, S., Y. Wu, Q. Chen, Z. Yu, C. Wang, S. Jin, Y. Ding, and G. Wu, Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem., 2006. 8(4): p. 325-327. 46. Fukaya, Y., K. Hayashi, M. Wada, and H. Ohno, Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chemistry, 2008. 10(1): p. 44-46. 47. Vitz, J., T. Erdmenger, C. Haensch, and U.S. Schubert, Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green chemistry, 2009. 11(3): p. 417-424. 48. Li, J., X. Wei, Q. Wang, J. Chen, G. Chang, L. Kong, J. Su, and Y. Liu, Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydrate polymers, 2012. 90(4): p. 1609-1613. 49. Iwamoto, S., A. Nakagaito, and H. Yano, Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Applied Physics A, 2007. 89(2): p. 461-466. 50. 5351, I.S., ulps—Determination of limiting viscosity number in cupriethylenediamine solution. International Organization for Standardizationt,Geneva, Switzerland, 2010. 51. Park, S., J.O. Baker, M.E. Himmel, P.A. Parilla, and D.K. Johnson, Research cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels, 2010. 3(10). 52. Saito, T., Isogai, A., TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the waterinsoluble fractions. Biomacromolecules, 2004. 5: p. 1983–1989. 53. W?gberg, L., G. Decher, M. Norgren, T. Lindstr?m, M. Ankerfors, and K. Axn?s, The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir, 2008. 24(3): p. 784-795. 54. Gonz?lez, I., F. Vilaseca, M. Alcal?, M. Pèlach, S. Boufi, and P. Mutjé, Effect of the combination of biobeating and NFC on the physico-mechanical properties of paper. Cellulose, 2013. 20(3): p. 1425-1435. 55. Yano, H. and S. Nakahara, Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. Journal of Materials Science, 2004. 39(5): p. 1635-1638. 56. Iwatake, A., M. Nogi, and H. Yano, Cellulose nanofiber-reinforced polylactic acid. Composites Science and Technology, 2008. 68(9): p. 2103-2106. 57. Fuqua, D.L., D.C. Kleinschmidt, J.R. Melchion, and B.A. Roberts, Filling-containing, dough-based products containing cellulosic fibrils and microfibrils. 1988, Google Patents. 58. Hayama, I. and H.-S. Koh, Whipping cream compositions possessing a lowered fat content and improved acid resistance and freeze resistance, and process for producing the same. 1997, Google Patents. 59. Broz, R.T. and R.A. Share, Method of reducing the animal fat content of meat products. 1997, Google Patents. 60. Morano, J.R., Thermostable edible composition having ultra-low water activity. 1998, Google Patents. 61. Langlois, B., J. Benchimol, G. Guerin, I. Vincent, A. Senechal, and R. Cantiani, Fluid comprising cellulose nanofibrils and its use for oil mining. 2002, Google Patents. 62. Sandberg, K.R., F.W. Snyder, and A.F. Turbak, Suspensions containing microfibrillated cellulose. 1985, Google Patents. 63. Chatterjee, P.K. and K.B. Makoui, Freeze dried microfibrilar cellulose. 1984, Google Patents. 64. Mondet, J., Cosmetic use of natural microfibrils and a film-forming polymer as a composite coating agent for hair, eyelashes, eyebrows and nails. 1999, Google Patents. 65. Sandberg, K.R., F.W. Snyder, and A.F. Turbak, Suspensions containing microfibrillated cellulose. 1984, Google Patents.