ساختار و رفتارمکانیکی سلولز نانوفیبریله شده و برخی مشتقات آن

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشگاه آزاد واحد آزاد شهر

چکیده

چوب یک جایگزین زیست فروپاش، قابل بازیافت و تجدید پذیر برای مواد نفتی می‌باشد که موجب حفاظت محیط ‌زیست از طریق محدودسازی ‏میزان آلاینده‌های غیر قابل تجزیه می‌شود. ماده سلولزی به‌عنوان عنصر اساسی گیاهان و باکتری‌ها شناخته شده است و مواد طبیعی نظیر گیاهان، چوب ‏و درختان را در زمره مواد با منفعت اکولوژیکی قرار داده است. میکرو الیاف سلولزی در دیواره سلولی چوب توانی بالقوه برای طراحی مواد جدید با ویژگی-‏های جدید ارائه می‌کند. دلیل این امر وجود اجزای با ابعاد نانومقیاس است که دارای ویژگی‌های متفاوتی از همتاهای حجیمشان می‌باشند. ‏NFC‏ سازه‏ای نانومقیاس از سلولز می‌باشد که به روش‌ها مختلفی فرآوری می‌گردد. به‌منظور کاهش مصرف انرژی بالا در ارتباط با این فرآیندها و جداسازی الیاف ‏منفرد از تجمعات فیبری پیش تیمارهای شیمیایی و آنزیمی مواد خام سلولزی توسعه داده شده است. وجود اتصالات فیبری زیاد در شبکه ‏NFC‏ موجب ‏افزایش مدول کلی شبکه‌های فیبری و ویژگی‌های مکانیکی در فیلم‌های ایجاد شده از این مواد می‌گردد. از مشتقات ایجاده شده از نانو الیاف سلولزی ‏فوم‌ها و آئروژل‌ها می‌باشند که به‌واسطه سبک وزنی خود کاربردهای زیادی را در صنعت یافته‌اند. مهم‌ترین ویژگی آن‌ها عایق صوت و حرارت بودن ‏است. از طرفی دیگر آئروژل‌های سلولزی ویژگی‌های مکانیکی خوب و شفافیت متعادلی دارند. هزینه پایین زیست کامپوزیت‌های مبتنی بر الیاف گیاهی ‏یک محرک مهم در صنعت به شمار می‌رود. سلولز توانایی فوق‌العاده‌ای را به‌عنوان یک سازه بسیار مقاوم در کامپوزیت‌های زیستی نشان داده است. ‏سطح ویژه بالا و نسبت منظر بالا (نسبت طول به قطر) که اتصالات ثانویه قوی را در نانو الیاف سلولزی ایجاد می‌کند آن‌ها را برای فرآوری ‏نانو کامپوزیت‌ها جذاب ساخته است.‏

کلیدواژه‌ها


1. Houssine Sehaqui. 2011. Nanofiber networks, aerogels and biocomposites based on nanofibrillated cellulose from wood. KTH School of Chemical Science and Engineering. 2. Klemm D., Schmauder H. P. & Heinze T. 2001. “Cellulose,” In: S. De Baets, E. Vandamme and A. Steinbüchel, Eds., Biopolymers, Vol. 6, Wiley-VCH, Weinheim, pp. 275-287. 3. Osullivan A. C. 1997. Cellulose: the structure slowly unravels. Cellulose;4:173. 4. Moon R.J., Martini A., Nairn J., Simonsen J. & Youngblood J. 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev.;40(7):3941-3994. 5. Turbak A.F., Snyder F.W. & Sandberg K.R. 1983. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. Journal of Applied Polymer Science: Applied Polymer Symposium; 37:815. 6. Paakko M., Ankerfors M., Kosonen H., Nyk?nen A., Ahola S., Osterberg M., Ruokolainen J., Laine J., Larsson P.T., Ikkala O. & Lindstrom T. 2007. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules; 8(6):1934-1941. 7. Seppala J.V. 2012. Nanocellulose – a renewable polymer of bright future. Express Polym Lett; 6(4):257. 8. Taniguchi T. & Okamura K. 1998. New films produced from microfibrillated natural fibres. Polymer International; 47:291. 9. Dufresne A., Dupeyre D. & Vignon M.R. 2000. Cellulose microfibrils from potato tuber cells: Processing and characterization of starch-cellulose microfibril composites. Journal of Applied Polymer Science; 76:2080. 10. Malainine M.E., Mahrouz M. & Dufresne A. 2005. Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell. Composites Science and Technolog; 65:1520. 11. Bruce D.M., Hobson R.N., Farrent J.W. & Hepworth D.G. 2005. High-performance composites from low-cost plant primary cell walls. Composites Part a-Applied Science and Manufacturing; 36:1486. 12. Paakko M. K. 2013. Cellulose Nanofibrils as a Functional Material. DOCTORAL DISSERTATIONS, Aalto University School of Scinece. Department of Applied Physics, Molecular Materials. 13. Nakagaito A.N. & Yano H. 2004. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of highstrength plant fiber based composites. Appl Phys A Mater Sci Process; 78:547–52. 14. Wang B. & Sain M. 2007. Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym. Int. 56(4), 538-546. 15. Lavoine N., Desloges I., Dufresne A. & Bras J. 2012. Microfibrillated cellulose its barrier properties and applications in cellulose materials: A review. Carbohydrate Polymer. 90, 735-764. 16. Siro I. & Plackett D. 2010. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3), 459–494. 17. Henriksson M., Henriksson G., Berglund L.A. & Lindstrom T. 2007. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J; 43:3434–41. 18. Isogai A., Saito T. & Fukuzumi H. 2011. TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71-85. doi: 10.1039/c0nr00583e. Epub 2010 Oct 19. 19. Saito T. & Isogai A. 2005. A novel method to improve wet strength of paper. Tappi Journal & Solutions, 4(3). 20. Saito T., Kimura S., Nishiyama Y. & Isogai A. 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules; 8:2485–91. 21. Henriksson M., Berglund L.A., Isaksson P., Lindstrom T. & Nishino T. 2008. Cellulose nanopaper structures of high toughness. Biomacromolecules; 9:1579–85. 22. Ankerfors M. 2012. Microfibrillated cellulose:Energy-efficient preparation techniques and key properties, Licentiate Thesis, KTH, Stockholm. 23. Wagberg L., Decher G., Norgren M., Lindstrom T., Ankerfors M., Axnas K. 2008. The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24, 784-795. 24. Klemm D., Schumann D., Udhardt U. & Marsch S. 2001. Bacterial synthesized celluloseartificial blood vessels for microsurgery. Prog. Polym. Sci. 26, 1561-1603. 25. Klemm D., Heublein B., Fink H. P. & Bohn A. 2005. Cellulose: Fascinating Biopolymer and Sustainable Raw MaterialAngew. Chem. Int. Ed. 44, 3358-3393. 26. Hsieh Y. C., Yano H., Nogi M. & Eichhorn S. J. 2008. An Estimation of the Young's Modulus of Bacterial Cellulose Filaments. Cellulose 15(4), 507-513. 27. Page D. H., 1969. A Theory for the Tensile Strength of Paper.Tappi J. 52, 674-681. 28. Oksman K. & Sain M. 2006. ACS Symposium Series Cellulose Nanocomposites Processing, Characterization, and Properties, Vol. 938. 29. Nogi M. & Yano H. 2008. Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry. Adv. Mater. 20, 1849-1852. DOI: 10.1002/adma.200702559. 30. Walther A., Bjurhager I., Malho J. M., Pere J., Ruokolainen J., Berglund L. A. & Ikkala O. 2010. Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathway. Nano Lett. 10(8), 2742-2748. 31. Jin H., Cao A., Shi E., Seitsonen J., Zhang L., Ras R. H. A., Berglund L. A., Ankerfors M., Walther A. & Ikkala O. 2013. Ionically Interacting Nanoclay and Nanofibrillated Cellulose Lead to Tough Bulk Nanocomposites in Compression by Forced Self-Assembly. Journal of Materials Chemistry B 1, 835-840. http://dx.doi.org/10.1039/C2TB00370H. 32. Koskinen T. M., Ltd U. K., Qvintus P., Ritschkoff A.C., Tammelin T. & Pere J. Nanocellulose materials ( Preparation, properties, uses). VTT Technical Research Centre of Finland. 33. Weber H, De Grave I, R?hrl E. foamed plastics. Ullmann's Encyclopedia of Industrial Chemistry. 34. Kistler S. S. 1931. Coherent expanded aerogels and jellies. Nature 127, 741. 35. Husing N. & Schubert U. 1998. Aerogels airy materials: Chemistry, structure, and properties. Angewandte Chemie-International Edition; 37:23. 36. Kanamori K., Aizawa M., Nakanishi K. & Hanada T. 2007. New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Advanced Materials; 19:1589. 37. Tamon H., Ishizaka H., Araki T. & Okazaki M. 1998. Control of mesoporous structure of organic and carbon aerogels.Carbon 36, 1257 -1262. 38. Pekala R. W., Alviso C. T. & Lemay J. D. 1990. Organic Aerogels: Microstructural D ependence of Mechanical Properties in Compression.J. Non-Cryst. Solids 125, 67 -75. 39. Zou J., Liu J., Karakoti A. S., Kumar A., Joung D., Li Q., Khondaker S. I., Seal S. & Zhai L. 2010. Ultra-light Multi-walled Carbon Nanotube Aerogel. ACS Nano 4(12), 7293-7302 . 40. Nogi M., Kurosaki F., Yano H. & Takano M. 2010. Preparation of nanofibrillar carbon from chitin nanofibers. Carbohydr. Polym. 81, 919-924. 41. Rooke J., Matos C., Chatenet M., Sescousse R., Budtova T., Berthon F. S., Mosdale R. & Maillard F. D. R. 2010. Elaboration and characterizations of platinum nanoparticles supported on cellulose-based carbon aerogel. ECS Transactions 33, 447-459. 42. Pierre A. C. & Pajonk G. M. 2002. Chemistry of Aerogels and Their Applications. Chem. Rev. 102, 4243-4265. 43. Tamon H., Ishizaka H., Yamamoto T. & Suzuki T. 2000. Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors Carbon 38, 1099-1105. 44. Kuga S., Kim D.-Y., Nishiyama Y. & Brown R. M. 2002. Nanofibrillar carbon from native cellulose. Mol. Cryst. Liq. Cryst. 387, 13-19. 45. Iguchi M. Yamanaka S. & Budhiono A. 2000. Bacterial cellulose - a masterpiece of nature's arts. Journal of Materials Science; 35:261. 46. Klemm D., Heublein B., Fink H.P. & Bohn A. 2005. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie-International Edition; 44:3358. 47. Cai J., Kimura S., Wada M., Kuga S. & Zhang L. 2008. Cellulose aerogels from aqueous alkali hydroxide-urea solution. Chemsuschem;1:149-154. 48. Aaltonen O. & Jauhiainen O. 2009. The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydrate Polymers;75:125. 49. Jin H., Nishiyama Y., Wada M. & Kuga S. 2004. Nanofibrillar cellulose aerogels. Colloids and Surfaces a-Physicochemical and Engineering Aspects; 240:63. 50. Inoue T. & Osatake H. 1988. A new drying method of biological specimens for scanning electron-microscopy - the tert-butyl alcohol freeze-drying method. Archives of Histology and Cytology; 51:53. 51. Sehaqui H., Zhou Q. & Berglund L. A. 2011. High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Composites Science and Technology 71, 1593–1599. 52. Zhu J., Morgan A. B., Lamelas F. J., & Wilkie C. A. 2001. Fire properties of polystyrene–clay nanocomposites. Chemistry of Materials, 13, 3774–3780. 53. Taniguchi A., & Cakmak M. 2004. The suppression of strain induced crystallization in PET through submicron TiO2 particle incorporation. Polymer, 45, 6647–6654. 54. Tang T., Chen X., Chen H., Meng X., Jiang Z. & Bi W. 2005. Catalyzing carboniza-tion of polypropylene itself by supported nickel catalyst during combustion of polypropylene/clay nanocomposite for improving fire retardancy. Chemistry of Materials, 17, 2799–2802. 55. Svagan A. J., ?kesson, A., Ca??rdenas M., Bulut S., Knudsen J. C., Risbo J. & Plackett D. 2012. Transparent films based on PLA and montmorillonite with tunable oxygen bar-rier properties. Biomacromolecules, 13, 397–405. 56. Wang J., Cheng Q. & Tang Z. 2012. Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chemical Society Reviews, 41, 1111–1129. 57. Clarizia G., Algieri C. & Drioli E. 2004. Filler–polymer combination: A route to modify gas transport properties of a polymeric membrane. Polymer, 45, 5671–5681. 58. Yang Y. N. & Wang P. 2006. Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol–gel process. Polymer, 47, 2683–2688. 59. Galimberti M., Lostritto A., Spatola A. & Guerra G. 2007. Clay delamination in hydrocarbon rubbers. Chemistry of Materials, 19, 2495–2499. 60. Braganca F., Valadares L., Leite C. & Galembeck F. 2007. Counterion effect on the morphological and mechanical properties of polymer–clay nanocomposites prepared in an aqueous medium. Chemistry of Materials, 19, 3334–3342. 61. Saito T., Kimura S., Nishiyama Y. & Isogai A. 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules; 8:2485–91. 62. Jonoobi M., Harun J., Mathew A.P. & Oksman K. 2010. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Composites Science and Technology; 70:1742. 63. Iwatake A., Nogi M. & Yano H. 2008. Cellulose nanofiber-reinforced polylactic acid. Composites Science and Technology; 68:2103. 64. Cao X.D., Habibi Y. & Lucia L.A. 2009. One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. Journal of Materials Chemistry; 19:7137. 65. Yano H., Sugiyama J., Nakagaito A.N., Nogi M., Matsuura T., Hikita M. & Handa K. 2005. Optically transparent composites reinforced with networks of bacterial nanofibers. Advanced Materials; 17:153. 66. Zhou Q., Malm E., Nilsson H., Larsson P.T., Iversen T., Berglund L.A. & Bulone V. 2009. Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating. Soft Matter; 5:4124. 67. Gea S., Bilotti E., Reynolds C.T., Soykeabkeaw N. & Peijs T. 2010. Bacterial cellulosepoly( vinyl alcohol) nanocomposites prepared by an in-situ process. Materials Letters; 64:901. 68. Seydibeyoglu M.O. & Oksman K. 2008. Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Composites Science and Technology; 68:908. 69. Johnson R.K., Zink-Sharp A., Renneckar S.H., Glasser W.G. 2009. A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose; 16:227. 70. Sehaqui H. & Berglund L. 2009. Process for producing granules. SweTre Technologies, US provisional application No 61/260861, filed, 11-13. 71. Favier V., Chanzy H. & Cavaille J.Y. 1995. Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules; 28:6365–7. 72. Svagan A. J., Samir M. & Berglund L. A. 2007. Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules; 8:2556–63. 73. Molin U. & Daniel G. 2004. Effects of refining on the fibre structure of kraft pulps as revealed by FE-SEM and TEM: influence of alkaline degradation. Holzforschung; 58:226–32. 74. Krkoska P., Misovec P., Obertova D. & Blazej A. 1986. Papermaking characterization of pulp fibers – evaluation of paper strength properties by parameters of pulp fibres treated by beating. Cellulose Chem Technol; 20:375–82. 75. John A., Ko H.U., Kim D.G. & Kim J. 2011. Preparation of cellulose-ZnO hybrid films by a wet chemical method and their characterization, Cellulose 18, 675–680. 76. Goncalves G., Marques P.A.A.P., Neto C.P., Trindade T., Peres M. & Monteiro T. 2009. Growth, structural, and optical characterization of ZnO-coated cellulosic fibers, Cryst. Growth Des. 9, 386–390. 77. Martins N.C.T., Freire C.S.R., Neto C.P., Silvestre A.J.D., Causio J., Baldi G., Sadocco P. & Trindade T. 2012. Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. Colloids and Surfaces A: Physicochem. Eng. Aspects 417 (2013) 111– 119. 78. Hu L., Liu N., Eskilsson M., Zheng G., McDonough J., Wagberg L. & Cui Y. 2012. Silicon-conductive nanopaper for Li-ion batteries. Nano Energy, http://dx.doi.org/ 10.1016/j.nanoen.2012.08.008.