خصوصیات، مکانیسم عملکرد و کاربردهای رس

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

آنتی بیوتیک ها ازجمله فرآورده های مصرفی مورد مصرف جهت کشتن و یا ممانعت از رشد میکروارگانیسم ها هستند، که مصرف بیش از حد و استفاده نادرست از آنتی بیوتیک ها منجربه افزایش مداوم در تعداد بیماری های عفونی درنتیجه باکتری های مقاوم به آنتی بیوتیک ها شده است. از جمله استراتژی های به کارگرفته شده جهت مقابله با این مشکل، ترکیب سنتی و ثانویه داروها در تحقیقات به عنوان عوامل ضدمیکروبی مؤثر، کم خطر و ارزان می باشد. رس ها موادی طبیعی با ساختار لایه ای و سطح ویژه بالا می باشند که با توجه به ویژگی توان بالا در مبادله یونی، مصرف آن-ها در زمینه ها مختلف، اعم از پزشکی در حال افزایش است. علاوه براین، ساختارچندلایه در این مواد باعث ممانعت از عبور گازها می شود که خود در صنعت بسته بندی ویژگی جالب توجه ای می باشد. همچنین در تحقیقات مختلف نشان داده شده است که برخی از رس ها به طور بالفعل دارای خواص ضدمیکربی علیه تعدادی از میکروارگانیسم ها، به ویژه باکتری های گرم مثبت نظیر s.aureus می باشند.

کلیدواژه‌ها


1. Abdollahi Mehdi, RezaeiMasoud, FarziGholamali. 2012. A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan.Journal of Food Engineering. 111, 343–350. 2. AguzziCarola, SandriGiuseppina, Bonferoni Cristina, CerezoPilar, Rossi Silvia, Ferrari Franca, Caramella Carla, &Viseras César. 2014. Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids and Surfaces B: Biointerfaces 113, 152– 157. 3. Alboofetileh Mehdi, RezaeiMasoud, HosseiniHedayat&Abdollahi Mehdi. 2014. Antimicrobial activity of alginate/clay nanocomposite films enriched with essential oils against three common foodborne pathogens. Food Control 36 (2014) 1 7. 4. Alboofetileh Mehdi, RezaeiMasoud, HosseiniHedayat&Abdollahi Mehdi. 2014. Antimicrobial activity of alginate/clay nanocomposite films enriched with essential oils against three common foodborne pathogens. Food Control. 36, 1 7. 5. Arias CA, Murray BE. 2009. Antibiotic resistant bugs in the 21st century — A clinical super challenge. New England Journal of Medicine. 360:439 443. 6. Ashley R. H., Matthew R. , Gillian A. H., Elsie E. G. 2013. Clays and tetracyclines: composite formulation and Antibacterial properties. XV International Clay Conf. 7. Barnes PM, Bloom B, Nahin RL. 2007. Complementary and alternative medicine use among adults and children: United States. 8. Bharadwaj, R.K., 2001. Modeling the barrier properties of polymer layered silicate nanocompositesMacromolecules 34, 9189–9192. 9. Block SS. 2001. Disinfection, Sterilization, and Preservation. Philadelphia, PA: Lippincott Williams & Wilkins. 10. Bryskier A. 2006. Historical review of antimicrobial chemotherapy. In: Bryskier A, ed. Antimicrobial Agents: Antibacterials and Antifungals. Washington DC:ASM Press; 1 12. 11. CarjaG., KameshimaY., CiobanuG., ChiriacH., OkadaK.. 2009.New hybrid nanostructures based on oxacillin–hydrotalcite like anionic clays and their textural properties.Micron. V(40), I(1), 147–150. 12. Carretero M, Pozo M. 2009. Clay and non clay minerals in the pharmaceutical industry Part I. Excipients and medical applications.Applied Clay Science. 46:73 80. 13. Carretero, M.I., 2002. Clay minerals and their beneficial effects upon human health.A review. Applied Clay Science 21, 155–163. 14. Casariego, A., Souza, B.W.S., Cerqueira, M.A., az, R., Vicente, A.A., ? Teixeira, J.A., Cruz, L., D 2009. Chitosan/clay films’ properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocolloids 23 (7), 1895– 1902. 15. Castellano, P., Belfiore, C., Fadda, S., &Vignolo, G. 2008.A review of bacteriocinogenic lactic acid bacteria used as bioprotective cultures in fresh meat produced in Argentina. Meat Science, 79(3), 483 499. 16. Castellano, P., Belfiore, C., Fadda, S., &Vignolo, G. 2008.A review of bacteriocinogenic lactic acid bacteria used as bioprotective cultures in fresh meat produced in Argentina. Meat Science, 79(3), 483 499. 17. Darder, M., Colilla, M., Ruiz Hitzky, E., 2003. Biopolymer Clay Nanocomposites Based on Chitosan Intercalated in Montmorillonite. Chemistry of Materials 15 (20), 3774–3780. 18. Decker C., Keller L., Zahouily K., Benfarhi S. 2005. Polymer 46, 6640. 19. Deepak Shah, PralayMaiti, Eric Gunn, Daniel F. Schmidt, David D. Jiang, Carl A. Batt, and Emmanuel P. Giannelis. 2004. Dramatic Enhancement in toughness of polyvinylidene fluoride nanocomposites via nanoclay directed crystal structure and morphology. Advanced materials.16, No. 14. DOI: 10.1002/adma.200306355. 20. Diekema DJ, BootsMiller BJ, Vaughn TE, Woolson RF, Yankey JW, Ernst EJ, Flach SD, Ward MM, Franciscus CLJ, Pfaller MA, Doebbeling BN. 2004. Antimicrobial resistance trends and outbreak frequency in United States hospitals.Clinical Infectious Diseases. 38:78 85. 21. Dioscorides P. 2000.De MateriaMedica.Being an herbal with many other medicinal materials. Written in Greek in the first century of the common era: a new indexed version in modern English. 1st ed. Osbaldeston TE, ed. Johannesburg, South Africa. 22. Ekosse G. E. 2011. Mineralogical and geochemical aspects of geophagic clayey soils from the Democratic Republic of Congo.African Journal of Business Management. 6:7302 7313. 23. Fernandez, A., Soriano, E., Lopez Carballo, G., Picouet, P., Lloret, E., Gavara, R.,Hernandez Munoz, P., 2009. Preservation of aseptic conditions in absorbentpads by using silver nanotechnology. Food Res. Int. 42, 1105–1112. 24. Geissler PW, Mwaniki D, Thiong'o F, Friis H. 1998. Geophagy as a risk factor for geohelminth infections: a longitudinal study of Kenyan primary schoolchildren. Transactions of the Royal Society of Tropical Medicine and Hygiene. 92:7 11. 25. Gennadios, A., 2002. Protein based Films and Coatings.CRC Press, Boca Raton, FL. 26. Giannelis E. P. 1996. Adu. Mater 8(l), 2 9. 27. Giannelis, E.P., 1996. Polymer layered silicate nanocomposites. Advanced Materials 8, 29–35. 28. GiuseppinaSandri, Maria Cristina Bonferoni, Franca Ferrari, Silvia Rossi,CarolaAguzzi, Michela Mori, PietroGrisoli, PilarCerezo, MarikaTenci,CesarViseras, Carla Caramella. 2013. Montmorillonite–chitosan–silver sulfadiazine nanocompositesfortopical treatment of chronic skin lesions: In vitro biocompatibility,antibacterial efficacy and gap closure cell motility properties. Carbohydrate Polymers. 29. Glickman LT, Camara AO, Glickman NW, McCabe GP. 1999. Nematode intestinal parasites of children in rural Guinea, Africa: prevalence and relationship to geophagia.International Journal of Epidemiology. 28:169 174. 30. HamiltonA.R. , HutcheonG.A. , RobertsM. , GaskellE.E. 2013.Formulationandantibacterial profiles of clay–ciprofloxacin composites.Applied Clay Science. 31. Han, Yang Su , Lee Sang Hoon, Choi Kyung Ho , Park In. 2010. Preparation and characterization of chitosan–clay nanocomposites with antimicrobial activity.Journal of Physics and Chemistry of Solids. Volume 71, Issue 4, April 2010, Pages 464–467. 32. Hewson A. 1872. Earth as a Topical Application inSurgery. Philadelphia: Lindsay &Blakiston. 33. Hsu Shan hui, Wang Ming Chien, LinJiang Jen. 2012. Biocompatibility and antimicrobial evaluation of montmorillonite/chitosan nanocomposites. Applied Clay Science.Volume 56, Pages 53–62. 34. Huang, X. S., & Netravali, A. 2007.Characterization of flax fiber reinforced soy protein resin based green composites modified with nano clay particles. Composites Science and Technology, 67(10), 2005– 2014. 35. Kampeerapappun P., Aht ong D., Pentrakoon D., Srikulkit K. 2007.Preparation of cassava starch/ montmorillonite composite film, Carbohydrate Polymers 67, 155–163. 36. Kawai K, Saathoff E, Antelman G, Msamanga G, Fawzi WW. 2009. Geophagy (soil eating) in relation to anemia and helminth infection among HIV– infected pregnant women in Tanzania. The American Journal of Tropical Medicine and Hygiene. 80:36 43. 37. Kim S., Guymon C.A., Polym J. 2011. Sci. A: Polym. Chem. 49, 465. 38. Krochta, J.M., Baldwin, E., Nisperos Carriedo, M.O., 1994.Edible Films and Coatings to Improve Food Quality.Technomic Publishing Co., Lancaster, PA. 39. Kumar, S. A., He, Y. L., Ding, Y. M., Le, Y., Kumaran, M. G., & Thomas, S. 2008. Gas transport through nanopoly(ethylene co vinyl acetate) composite membranes. Industrial and Engineering Chemistry Research, 47, 4898–4904. 40. Kurek, M., Descours, E., Galic, K., Voilley, A., &Debeaufort, F. 2012. How composition and process parameters affect volatile active compounds in biopolymer films. Carbohydrate Polymers, 88, 646 656. 41. Kurek, M., Descours, E., Galic, K., Voilley, A., &Debeaufort, F. 2012. How composition and process parameters affect volatile active compounds in biopolymer films. Carbohydrate Polymers, 88, 646 656. 42. Lakshmanan, R., Piggott, J. R., & Paterson, A. 2003.Potential applications of high pressure for improvement in salmon quality.Trends in Food Science & Technology, 14(9), 354e363. 43. Lakshmanan, R., Piggott, J. R., & Paterson, A. 2003.Potential applications of high pressure for improvement in salmon quality.Trends in Food Science & Technology, 14(9), 354e363. 44. Larraza I., Peinado C., Abrusci C., Catalina F., Corrales T. 2011. Hyperbranched polymers as clay surface modifiers for UV cured nanocomposites with antimicrobial activity. Journal of Photochemistry and Photobiology A: Chemistry 224, 46– 54. 45. Lavorgna, M., Piscitelli, F., Mangiacapra, P., Buonocore, G.G., 2010.Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohydrate Polymers 82 (2), 291–298. 46. Liu Andong, Berglund Lars A. 2012. Clay nanopaper composites of nacre like structure based on montmorrilonite and cellulose nanofibers— Improvements due to chitosan addition. Carbohydrate Polymers 87, 53– 60. 47. Liu, A. D., Walther, A., Ikkala, O., Belova, L., & Berglund, L. A. 2011.Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules, 12(3), 633–641. 48. Lopez Galindo A, Viseras C, Cerezo P. 2007. Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products.Applied Clay Science. 36:51 63. 49. Mainardi T, Kapoor S, Bielory L. 2009. Complementary and alternative medicine: Herbs, phytochemicals and vitamins and their immunologic effects. Journal of Allergy and Clinical Immunology. 123:283 294. 50. Marambio Jones C, Hoek EV. 2010. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research. 12:1531 1551. 51. Martins, N.C.T., Freire, C.S.R., Pinto, R.J.B., Fernandes, S.C.M., Neto, C.P., Silvestre,A.J.D., Causio, J., Baldi, G., Sadocco, P., Trindade, T., 2012. Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 19, 1425–1436. 52. McIntyre, R.A., 2012. Common nano materials and their use in real world applica tions. Sci. Prog. 95, 1–22. 53. Nassar, M.A., Youssef, A.M., 2012. Mechanical and antibacterial properties ofrecycled carton paper coated by PS/Ag nanocomposites for packaging. Carbo hydr.Polym. 89, 269–274. 54. Nesse WD, Schulze DJ. 2004. Sheet silicates. In: Neese WD, ed. Introduction to Mineralogy. USA: Oxford University Press; 235 260. 55. NienYung Tang , Liao Yi Han , LiaoPao Chi. 2011. Antibacterial activity of poloxamer modified montmorillonite clay against E. coli. MaterialLetters.Volume 65, Issues 19–20, Pages 3092–3094. 56. Nunn J. 2002. Ancient Egyptian Medicine. London:Red River Books. 57. Nyk?nen, A., Weckman, K., &Lapvetel?inen, A. 2000. Synergistic inhibition of Listeria monocytogenes on cold smoked rainbow trout by nisin and sodium lactate. International Journal of Food Microbiology, 61(1), 63 72. 58. Nyk?nen, A., Weckman, K., &Lapvetel?inen, A. 2000. Synergistic inhibition of Listeria monocytogenes on cold smoked rainbow trout by nisin and sodium lactate. International Journal of Food Microbiology, 61(1), 63 72. 59. Ouattara, B., Simard, R. E., Piette, G., Bégin, A., & Holley, R. A. 2000.Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. International Journal of Food Microbiology, 62(1), 139 148. 60. Ouattara, B., Simard, R. E., Piette, G., Bégin, A., & Holley, R. A. 2000.Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. International Journal of Food Microbiology, 62(1), 139 148. 61. Park, H. M., Liang, X. M., Mohanty, A., Misra, M., &Drzal, T. L. 2004.Effect of compatibilizer on nanostructure of the biodegradable cellulose acetate/ organoclaynanocomposites. Macromolecules, 37(24), 9076–9082. 62. Parolo M. E., Fernandez L. G., Zajonkovsky I., Sanchez M. P. and Baschini M. 2011.Antibacterial activity of materials synthesized from clay minerals. Science against microbial pathogens: communicating current research and technological advances. 144 151. 63. PramanikSujata, BharaliPranjal, Konwar B.K. , KarakNiranjan. 2014. Antimicrobialhyperbranchedpoly (esteramide)/ 64. nanofibermodifiedmontmorillonitenanocomposites. Materials Science and Engineering: C. Volume 35, Pages 61–69. 65. PraneeLertsutthiwong, KhanitthaNoomun,Srichal aiKhunthon, SarintornLimpanart. 2012. Influence of chitosan characteristics on the properties of biopolymeric chitosan–montmorillonite. Progress in Natural Science: Materials International. 22(5):502– 508. 66. Pranger, L., &Tannenbaum, R. 2008. Biobasednanocomposites prepared by in situ polymerization of furfuryl alcohol with cellulose whiskers or montmorillonite clay. Macromolecules, 41(22), 8682–8687. 67. Ray, S. S., Maiti, P., Okamoto, M., Yamada, K., & Ueda, K. 2002.New polylactide/ layered silicate nanocomposites. 1. Preparation, characterization, and properties. Macromolecules, 35(8), 3104–3110. 68. Ray, S. S., Okamoto, K., & Okamoto, M. 2003. Structure–property relationship in biodegradable poly(butylenes succinate)/layered silicate nanocomposites. Macromolecules, 36(7), 2355– 2367. 69. Reinbacher WR. 1999. A brief history of clay in medicine. CMS News.;11:22 23. 70. Ren, H., Zhu, M., &Haraguchi, K. 2011. Characteristic swelling–deswelling of polymer/ clay nanocompositegels. Macromolecules, 44, 8516– 8526. 71. Rhim, J.W., & Ng, P. K. 2007.Natural biopolymer based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, 47(4), 411 433. 72. Rhim, J., Hong, S., Park, H., Ng, P., 2006. Preparation and characterization of chitosan based nanocomposite films with antimicrobial activity. Journal of Agricultural and Food Chemistry 54 (16), 5814–5822. 73. Rhim, J., Ng, P., 2007. Natural biopolymer based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition 47 (4), 411–433. 74. Rhim, J. W., & Ng, P. K. 2007.Natural biopolymer based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, 47(4), 411 433. 75. Ritz, M., Jugiau, F., Rama, F., Courcoux, P., Semenou, M., &Federighi, M. 2000.Inactivation of Listeria monocytogenes by high hydrostatic pressure: effects and interactions of treatment variables studied by analysis of variance. Food Microbiology, 17(4), 375 382. 76. Ritz, M., Jugiau, F., Rama, F., Courcoux, P., Semenou, M., &Federighi, M. 2000.Inactivation of Listeria monocytogenes by high hydrostatic pressure: effects and interactions of treatment variables studied by analysis of variance. Food Microbiology, 17(4), 375 382. 77. Schoenenberger F.1911. The use of earth (bolus alba) in the healing art. Journal of the American Osteopathic Association.10:413 417. 78. Sharma, V.K., Yngard, R.A., Lin, Y., 2009. Silvernanoparticles: green synthesis andtheir antimicrobial activities. Adv. Colloid Interface 145, 83–96. 79. SlamovaR. , TrckovaM. , VondruskovaH. , Zraly Z. , Pavlik I. 2011. Clay minerals in animal nutrition. Applied Clay Science.Volume 51, Issue 4, Pages 395–398. 80. Sorrentino, A., Gorrasi, G., Tortora, M., Vittoria, V., 2006.Barrier properties of polymer/clay nanocomposites. In: Mai, Y. W., Yu, Z. Z. (Eds.), Polymer Nanocomposites. Woodhead Publishing Ltd., Cambridge, UK, pp. 273–292. 81. Sorrentino, A., Gorrasi, G., Vittoria, V., 2007. Potential perspectives of bionanocomposites for food packaging applications. Trends in Food Science and Technology 18, 84–95. 82. Uyama, H., Kuwabara, M., Tsujimoto, T., Nakano, M., Usuki, A., Kobayashi, S., 2003.Green nanocomposite from renewable resources: plant oil clay hybrid materials. Chemistry of Materials 15, 2492–2494. 83. Vermeer DE, Ferrell Jr RE. 1985. Nigerian geophagical clay: a traditional antidiarrheal pharmaceutical. Science. 227:634 636. 84. Vermeer DE. 1966. Geophagy among the Tiv of Nigeria.Annals of the Association of American Geographers. 56:197 204. 85. Viseras C, Aguzzi C, Cerezo P, Lopez Galindo A. 2007.Uses of clay minerals in semisolid health care and therapeutic products.Applied Clay Science. 36:37 50. 86. Viseras C, Lopez Galindo A. 1999. Pharmaceutical applications of some Spanish clays (sepiolite, palygorskite, bentonite): some preformulation studies. Applied Clay Science. 14:69 82. 87. Walther, A., Bjurhager, I., Malho, J. M., Pere, J., Berglund, L. A., &Ikkala, O. 2010a.Large area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nano Letters, 10(8), 2742–2748. 88. Wang Hua, Zeng Changchun, Elkovitch Mark, Lee L. James, and Koelling Kurt W. 2001. Processing and Properties of Polymeric Nano Composites. Polymer Engineering and Science, Vol, 41, No. 11 89. WangXiaoying, DuYumin, YangJianhong, WangXiaohui, Shi Xiaowen, HuYing. 2006.Preparation, characterizationandantimicrobialactivityofchitosan/ layeredsilicatenanocomposites. Volume 47, Issue 19, Pages 6738–6744. 90. Wang, S., Shen, L., Tong, Y., Chen, L., Phang, I., Lim, P., Liu, T., 2005. Biopolymer chitosan/ montmorillonitenanocomposites: preparation and characterization. Polymer Degradation and Stability 90 (1), 123–131. 91. Williams LB, Haydel SE, Giese Jr RF, Eberl DD. 2008. Chemical and mineralogical characteristics of French green clays used for healing.Clays and Clay Minerals. 56:437 452. 92. Williams, L.B., Haydel, S.E., 2010. Evaluation of the medicinal use of clay minerals as antibacterial agents. International geology review 52, 745–770. 93. World Health Organization. 2002. Draft report of the 5th WHO Advisory Group Meeting on Buruli ulcer. Geneva, Switzerland: World Health Organization. 94. Wu T., Xie A. G., Tan Sh. Z., Cai X. 2011. Antimicrobial effects of quaternary phosphonium salt intercalated clay mineral on Escherichia coli and Staphylococci aureus. Colloids and Surfaces B: Biointerfaces. V86, I 1, 232 236. 95. Xu, Y., Ren, X., Hanna, M., 2006.Chitosan/clay nanocomposite film preparation and characterization. Journal of Applied Polymer Science 99 (4), 1684– 1691. 96. Yang Quanling, Wu Chun Nan, Saito Tsuguyuki, Isogai Akira. 2012. Cellulose–clay layered nanocomposite films fabricated from aqueous cellulose/LiOH/urea solution.Carbohydrate Polymers. 97. Yang, Q., Fujisawa, S., Saito, T., &Isogai, A. 2012. Improvement of mechanical and oxygen barrier properties of cellulose films by controlling drying conditions of regenerated cellulose hydrogels. Cellulose, 19, 695–703. 98. Yang, Q., Fukuzumi, H., Saito, T., Isogai, A., & Zhang, L. 2011.Transparent cellu lose films with high gas barrier properties fabricated from aqueous alkali/ urea solutions.Biomacromolecules, 12, 2766–2771. 99. Yang, Q., Lue, A., & Zhang, L. 2010.Reinforcement of ramie fibers on regenerated cellulose films. Composite Science and Technology, 70, 2319–2324. 100. Yunzhi Ling, YuqiongLuo, JiwenLuo, Xiaoying Wang, Runcang Sun. 2013. Novel antibacterial paper based on quaternizedcarboxymethylchitosan/organic montmorillonite/Ag NP nanocomposites.Industrial Crops and Products 51 (2013) 470– 479.