مروری بر خواص نانوذرات اکسید آهن با پوشش‌های مختلف در کاربردهای زیست‌پزشکی

نوع مقاله : مروری

نویسندگان

1 گروه مهندسی پلیمر، دانشگاه آزاد اسلامی، واحد شیراز، شیراز، ایران

2 گروه مهندسی شیمی و پلیمر، دانشگاه یزد، یزد، ایران

3 گروه مهندسی پلیمر، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

نانوذرات اکسید آهن به دلیل خواص ویژه از جمله رفتار سوپرپارامغناطیس، سمیت کم، زیست‌سازگاری، روش‌های متعدد جهت سنتز و پتانسیل اصلاح سطح آن‌ها با پوشش‌های مختلف، کاربرد گسترده‌ای در حوزه‌های مختلف علوم و مهندسی از جمله زیست‌پزشکی یافته‌اند. با این وجود تشکیل کلوخه، توزیع اندازه پراکنده و نیز اکسیداسیون سریع نانوذرات از جمله چالش‌هایی است که به هنگام استفاده از این مواد وجود دارد. در همین راستا روش‌ها و ترکیبات مختلفی برای سنتز و اصلاح سطحی نانوذرات اکسید آهن به منظور بهبود ویژگی‌ها و افزایش کارایی آن‌ها، معرفی شده است. در این پژوهش براساس تحقیقات و مطالعات پیشین، به مرور مزایا و معایب انواع روش‌های سنتز نانوذرات اکسید آهن، اصلاح سطحی نانوذرات تولید شده به کمک مواد شیمیایی مختلف، کاربردهای نانوذرات اصلاحی و نیز چالش‌های پیشرو به هنگام استفاده پرداخته شده است و پیشنهادات ارائه شده جهت بهبود کارایی این مواد در عرصه زیست پزشکی اعم از درون تن و برون تن، نیز بیان شده است.

کلیدواژه‌ها


عنوان مقاله [English]

A review on the properties of the Iron Oxide nanoparticles coated with different materials used in biomedical applications

نویسندگان [English]

  • amir hossein haghighi 1
  • sara taherinezhad 2
  • Zahra Babaei 3
1 Department of Polymer Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2 Department of Chemical and Polymer Engineering, Yazd University, Yazd, Iran
3 Department of Polymer Engineering, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

As a consequence of special properties such as superparamagnetic behavior, low toxicity, biocompatibility, numerous ways of synthesis and surface modification capability with diverse materials, nowadays Iron Oxide nanoparticles (IONPs) are widely utilized in a great deal of scientific fields, as well as biomedicine. However, agglomerations formation and broad particle size distribution, beside rapid oxidation are still a challenge of these nano-sized particles. In this regard, several routes of synthesis and many chemicals in order to modify IONPs surface have been proposed so as to enhance their properties and increase their potency. Therefore, in this research based on previous articles and studies, the benefits and the drawbacks of various routes of iron oxide nanoparticles synthesis, surface modification of the produced nanoparticles with different components, the applications of the modified nanoparticles along with the leading challenges are discussed. In addition, suggestions offered by other biomedical researchers and scientists to intensify their performance and their effectiveness in-vitro and in-vivo are stated in the following.

کلیدواژه‌ها [English]

  • Iron Oxide magnetic nanoparticles
  • Coatings
  • Iron Oxide nanoparticles Properties
  • Biomedicine
[1] M. I. J. Denison, RSC advances, 5(121), 99820-99831, (2015).
[2] M. G. Pineda, Molecules, 19(7), 9273-9287, (2014).
[3] A. S. Pina, Water research, 66, 160-168, (2014).
[4] M. Jafarzadeh, RSC advances, 5(53), 42744-42753, (2015).
[5] M. A. Zulfikar, Environmental Nanotechnology, Monitoring & Management, 6, 64-75, (2016).
[6] G. Huang, Journal of materials chemistry, 19(35), 6367-6372, (2009).
[7] N. A. Frey, Chemical Society Reviews, 38(9), 2532-2542, (2009).
[8] J. Boudon, Chemical Communications, 49(67), 7394-7396, (2013).
[9] P. Shete, Journal of Magnetism and Magnetic Materials, 377, 406-410, (2015).
[10] A. Ruiz, Acta biomaterialia, 9(5), 6421-6430, (2013).
[11] Y. Sahoo, The Journal of Physical Chemistry B, 109(9), 3879-3885, (2005).
[12] A. K. Gupta, (2007).
[13] S. Sheng-Nan, Chinese Physics B, 23(3), 037503, (2014).
[14] M. Mahmoudi, Advanced drug delivery reviews, 63(1-2), 24-46, (2011).
[15] S. Laurent, Chemical reviews, 108(6), 2064-2110, (2008).
[16] H. Li, Z. Lu, (2014).
[17] G. Sharma, RSC advances, 3(1), 189-200, (2013).
[18] C. Okoli, Langmuir, 28(22), 8479-8485, (2012).
[19] I. Karimzadeh, Current Nanoscience, 13(2), 167-174, (2017).
[20] I. Morjan, Journal of nanoscience and nanotechnology, 10(2), 1223-1234, (2010).
[21] M. Abbas, Journal of Nanoparticle Research,15(1), 1-12, (2013).
[22] J. Wang, Journal of Power Sources, 282, 257-264, (2015).
[23] E. Solano, Journal of Nanoparticle Research, 14(8), 1-15, 2012.
[24] R. Strobel, Journal of Materials Chemistry, 17(45), 4743-4756, (2007).
[25] J. Xie, Advanced Materials, 19(20), 3163-3166, (2007).
[26] J. Wallyn, Pharmaceutics, 11(11), 601, (2019).
[27] A. A. Hernández-Hernández, Chemical Papers, 74, 3809-3824, (2020).
[28] M. Sakeye, Langmuir, 28(49), 16941-16950, (2012).
[29] A. Agarwala, Chemical Communications, 50(40), 5397-5399, (2014).
[30] D. An, Colloids and Surfaces A: Physiochemical and Engineering Aspects, 348(1-3), 9-13, (2009).
[31] H. Bala, Colloids and Surfaces A: Physiochemical and Engineering Aspects, 274(1-3), 71-76, (2006).
[32] M. Neouze, Monatshefte für Chemie-Chemical Monthly, 139(3), 183-195, (2008).
[33] D. Portet, Journal of colloid and interface science, 238(1), 37-42, (2001).
[34] M. Mahdavi, Molecules, 18(7), 7533-7548, (2013).
[35] P. I. Soares, Applied Surface Science, 383, 240-247, (2016).
[36] L. Zhang, Applied Surface Science, 253(5), 2611-2617, (2006).
[37] F. Senturk, Natural and Applied Science Journal, 2(2), 16-29, (2019).
[38] Y. Sahoo, Langmuir, 17(25), 7909-7911, (2001).
[39] K. Petcharoen, Materials Science and Engineering: B, 177(5), 421-427.
[40] H. Mohammadi, Toxicology Reports, 8, 331-336, (2021).
[41] W. Ling, Journal of Materials Research, 34(11), 1828-1844, (2019).
[42] S. Nigam, Journal of Magnetism and Magnetic Materials, 323(2), 237-243, (2011).
[43] I. L. Ardelean, Journal of Nanomaterials, (2017).
[44] M. Radwan, Journal of Chemical Technology & Metallurgy, 54(2), (2019).
[45] F. Shahidi, Advances in food and nutritions research, 49(4), 93-137, (2005).
[46] M. Ziegler-Borowska, Journal of Thermal Analysis and Calorimetry, 119(1), 499-506, (2015).
[47] F. Ahangaran, International Nano Letters, 3(1), 1-5, (2013).
[48] T. Chen, IOP Conference Series: Earth and Environmental Science, 108, 042097, (2018).
[49] K. Boustani, IET Nanobiotechnology, 12(1), 78-86, (2018).
[50] F. Sonvico, Bioconjugate chemistry, 16(5), 1181-1188, (2005).
[51] M. Yu, International journal of molecular sciences, 13(5), 5554-5570, (2012).
[52] A. M. Predescu, Royal Society open science, 5(3), 171525, (2018).
[53] R. Avazzade, Progress in biomaterials, 6(3), 75-84, (2017).
[54] X. Zhao, PLoS One, 9(6), e98919, (2014).
[55] I. Karimzadeh, Journal of Magnetism and Magnetic Materials, 433, 148-154, (2017).
[56] B. Steitz, Journal of Magnetism and Magnetic Materials, 311(1), 300-305, (2007).
[57] M. Arsianti, Biomacromolecules, 11(9), 2521-2531, (2010).
[58] S. D. Topel, Colloids and Surfaces B: Biointerfaces, 128, 245-253, (2015).
[59] R. Tutuianu, Nanomaterials, 7(10), 314, (2017).
[60] J. Yang, Applied surface science, 303, 425-432, (2014).
[61] J. Sun, Journal of biomedical materials research Part A, 80(2), 333-341, (2007).
[62] Z. Tu, Colloids and surfaces A: Physiochemical and engineering aspects, 436, 854-861, (2013).
[63] B. Zhang, Applied surface science, 266, 375-379, (2013).
[64] F. Hajesmaeelzadeh, Iranian journal of basic medical sciences, 19(2), 166, (2016).
[65] B. Gaihre, Journal of microencapsulation, 25(1), 21-30, (2008).
[66] S. Mohapatra, Journal of nanoscience and nanotechnology, 6(3), 823-829, (2006).
[67] M. Aliakbari, Toxicology in Vitro, 54, 114-122, (2019).
[68] A. Allahbakhsh, European Polymer Journal, 94, 417-430, (2017).
[69] M. Yamuara, Journal of Magnetism and Magnetic Materials, 279(2-3), 210-217, (2004).
[70] M. Khosroshahi, Adv. Nano Bio. M&D 1, 146, (2017).
[71] A. Ebrahimizadeh, Current Nanoscience, 11(1), 113-119, (2015).
[72] X. F. Sun, In Advanced Materials Rsearch, 743, 183-188, (2013).
[73] F. Ahangaran, International Nano Letters, 3(1), 1-5, (2013).
[74] T. Chen, IOP Conference Series: Earth and Environmental Science, 108, 042097, (2018).
[75] Z. Xiong, New Journal of Chemistry, 40(12), 9951-9957, (2016).
[76] C. Hui, Nanoscale, 3(2), 701-705, (2011).
[77] M. Tohidian, Journal of Macromolecular Science, Part B, 54(1), 17-31, (2015).
[78] A. H. Haghighi, Journal of Macromolecular Science, Part B, 56(6), 383-394, (2017).
[79] H. Ding, Chemistry of Materials, 24(23), 4572-4580, (2012).
[80] Y. He, Journal of Physics D: Applied Physics, 38(9), 1342, (2005).
[81] S. jo, Biomaterials, 21(6), 605-616, (2000).
[82] F. Ye, Contrast media & molecular imaging, 7(5), 460-468, (2012).
[83] N. Gharehaghaii, Studies in Medical Sciences, 30(8), 597-608, (2019).
[84] R. K. Singh, Journal of biomedical materials research Part A, 100(7), 1734-1742, (2012).
[85] C. Xu, Advanced drug delivery reviews, 65(5), 732-743, (2013).
[86] H. Chen, Sensors and Actuators B: Chemical, 212, 505-511, (2015).
[87] C. Li, Advanced functional materials, 24(12), 1772-1780, (2014).
[88] A. Mahmood, Desalination and Water Tratment, 57(42), 20069-20075.
[89] J. Li, Biomaterials, 38, 10-21, (2015).
[90] S. Silva, Chemical communications, 52(48), 7528-7540, (2016).
[91] H. Sun, European Journal of Inorganic Chemistry, 2013(1), 109-114, (2013).
[92] H. Salehizaeh, Journal of nanobiotechnology, 10(17), 1-7, (2012).
[93] P. G. Rudakovskaya, Mendeleev Communications, 3(20), 158-160, (2010).
[94] F. Mohammad, Thejournal of Physical Chemistry C, 114(45), 19194-19201, (2010).
[95] S. D. Iancu, International Journal of Nanomedicine, 15, 4811, (2020).
[96] A. Sood, Materials Science and Engineering: C, 80, 274-281, (2017).
[97] L. Wang, Colloids and Surfaces B: Biointerfaces, 84(2), 484-490, (2011).
[98] P. Gong, Nanotechnology, 18(28), 285604, (2007).
[99] S. Chen, J. Func. Mater., 48, 03097, (2017).
[100] B. Shao, Analytica chimica acta, 1033, 165-172, (2018).
[101] G. Gao, CrystEngComm, 14(22), 7556-7559, (2012).
[102] F. S. Majedi, physica status solidi (RRL)–Rapid Research Letters, 6(7), 318-320, (2015).
[103] A. Allahbakhsh, Journal of Thermal Analysis and Calorimetry, 128(1), 427-442, (2017).
[104] A. Allahbakhsh, Journal of Thermal Analysis and Calorimetry, 117(2), 525-535, (2014).
[105] J. Du, Chemical Communications, 50(30, 347-349, (2014).
[106] Y. Xu, The Journal of Physical Chemistry C, 114(11), 5020-5026, (2010).
[107] M. M. Song, Materials Science and Engineering: C, 77, 904-911, (2017).
[108] X. Cui, Chemical Engineering Journal, 326, 839-848, (2017).
[109] P. J. Sugumaran, ACS applied materials and interfaces, 11(25), 22703-22713, (2019).
[110] R. Rezaeipoor, Journal of innovative optical health sciences, 2(04), 387-396, (2009).
[111] J. Wallyn, Pharmaceutics, 11(11), 601, (2019).
[112] M. Dolci, Journal of Materials Chemistry C, 6(34), 9102-9110, (2018).
[113] S. T. Shah, Nanomaterials, 7(10), 306, (2017).
[114] R. A. Ismail, Material Science and Engineering: C, 53, 286-297, (2015).
[115] W. Lu, Molecular medicine reports, 9(3), 1080-1084, (2014).
[116] A. Zengin, Analyst, 138(23), 7238-7245, (2013).
[117] A. H. Haghighi, Journal of Magnetism and Magnetic Materials, 490, 165479, (2019).
[118] A. H. Haghighi, Heliyon, 6(4), e03677, (2020).
[119] Y. Yang, Journal of controlled release, 127(3), 273-279, (2008).
[120] L. U. Yan-Min, Letters in Biotechnology, 05, (2013).
[121] Y. Wang, Theranostics, 3(8), 544, (2013).
[122] R. Riahi, Current Opinion in Chemical Engineering, 7, 101-112, (2015).
[123] S. Laurent, Chemical reviews, 108(6), 2064-2110, (2008).
[124] B. Chen, Theranostics, 7(3), 538, (2017).
[125] R. A. Kader, AIP Conference Proceedings (Vol. 1885, No. 1, p. 0201136), (2017).
[126] C. Fan, International journal of pharmaceutics, 404(1-2), 180-190, (2011).
[127] B. Jang, Quantitative imaging in medicine and surgery, 2(1), 1, (2012).
[128] L. A. Thomas, Journal of Materials Chemistry, 19(36), 6529-6535, (2009).
[129] P. Moroz, Journal of surgical oncology, 77(4), 259-269, (2001).
[130] E. Kita, Journal of physics D: Applied physics, 43(47), 474011, (2010).
[131} T. Liu, Progress in Chemistry, 27(5), 601, (2015).
[132] C. Yue-Jian, Drug development and industrial pharmacy, 36(10), 1235-1244, (2010).