استفاده از چارچوب فلزی-آلی به عنوان قالب جهت سنتز کامپوزیت های اکسید فلزات:معرفی و کاربرد های آن

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیمی، دانشکده فیزیک و شیمی، دانشگاه الزهرا (س)، تهران، ایران

چکیده

بقا و رشد انسان از انرژی جدا نیست. با افزایش سریع جمعیت جهان و توسعه اقتصاد جهانی، تقاضا برای انرژی در حال رشد است. این امر منجر به توسعه نامتعادل محیط ، انرژی و جمعیت می شود. در حال حاضر، بیشتر منابع تجدیدپذیر به صورت برق ذخیره می ­شوند و انتقال می­ یابند. ذخیره انرژی با استفاده از یک فناوری نوظهور که بتواند استفاده از انرژی را بهبود ببخشد و دوستدار محیط زیست باشد توجه گسترده ای را به خود جلب کرده است. باتری ها و ابرخازن ها به شرط آنکه اندازه مناسبی داشته باشند به دلیل آن که می توانند حمل شوند از امیدوارکننده ترین فناوری­ها برای ذخیره انرژی الکتریکی به حساب می آیند. چارچوب های فلز-آلی (MOF) از جدیدترین مواد معرفی شده با امکان استفاده در این زمینه هستند. همچنین، چندسازه­ های اکسید فلز مشتق شده از این مواد به دلیل ظرفیت بالا، پایداری چرخه قابل توجه مواد بالقوه مهمی برای کاربردهای ذخیره انرژی در نظر گرفته می شوند. این بررسی به طور عمده کاربردهای چندسازه های اکسید فلز مشتق از MOF را در باتری­ها (LIBs،Li-S ، SIBs و LOBs) و ابرخازن­ها معرفی و بررسی می­ کند.

کلیدواژه‌ها


عنوان مقاله [English]

Metal-organic frameworks as templates for the synthesis of metal oxides composites; introduction and its applications

نویسندگان [English]

  • Taraneh Hajiashrafi
  • Fatemeh Shabani
Department of chemistry, faculty of physics and chemistry, Alzahra University, Tehran, Iran
چکیده [English]

Human survival and growth are inseparable from energy and facing serious ultimatum and threats. With the rapid growth of the world's population and the development of the global economy, the energy demand is growing. This leads to unbalanced development of the environment, energy, and population. Currently, most renewable resources are stored and transmitted as electrical energy. Energy storage using an emerging technology that can improve energy usage efficiently and be environmentally friendly at the same time has attracted widespread attention from academics and policy-makers. Batteries and supercapacitors are complementary electrochemical energy storage systems and are the most promising technologies for storing electrical energy. Metal-organic frameworks (MOF) are among the newest materials introduced in the last two decades, with the possibility of energy storage and energy conversion usage. This study mainly introduces and reviews the applications of MOF-derived metal oxide composites in batteries (Lithium-ion batteries (LIBs), Li-S, sodium-ion batteries (SIBs), and lithium-oxygen batteries (LOBs)) and supercapacitors.

کلیدواژه‌ها [English]

  • metal-organic frameworks
  • metal oxides composites
  • batteries
  • supercapacitors
 
[1]  Wang, Min-Qiang, et al. "Carbon nanotubes implanted manganese-based MOFs for simultaneous detection of biomolecules in body fluids" Analyst, 141.4 1279-1285. (2016).
[2]  Mirzadeh, Elham, et al. "Synthesis of nanomaterials with desirable morphologies from metal–organic frameworks for various applications"CrystEngComm,18 7410-7424,(2016).
 [3]  Li, Yan, et al. "MOF‐derived metal oxide composites for advanced electrochemical energy storage." Small 14.25: 1704435. (2018).
[4]  Wang, Yang, et al. "Application of MOFs-derived mixed metal oxides in energy storage." J. Electroanal. Chem. : 114576. (2020).
[5]  Kaneti, Yusuf Valentino, et al. "Nanoarchitectured design of porous materials and nanocomposites from metal‐organic frameworks." Adv. Mater. 29.12: 1604898, (2017.)
[6] Song, Yonghai, et al. "Metal/metal oxide nanostructures derived from metal–organic frameworks." RSC adv.  5.10 (2015): 7267-7279.
[7]  Fateeva, Alexandra, et al. "Synthesis, structure, characterization, and redox properties of the porous MIL‐68 (Fe) solid." Eur. J. Inorg. Chem. 2010.24,3789-3794, (2010).
[8]  Dang, Song, Qi-Long Zhu, and Qiang Xu. "Nanomaterials derived from metal–organic frameworks." Nat. Rev. Mater. 3.1, 1-14, (2017).
[9]  Li, Yan, et al. "MOF‐derived metal oxide composites for advanced electrochemical energy storage." Small 14.25: 1704435, (2018).
[10]  Salunkhe, Rahul R., et al. "Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons." J. Mater. Chem. A 2.46, 19848-19854, (2014).
[11]  Wang, Rutao, et al. "Engineering metal organic framework derived 3D nanostructures for high performance hybrid supercapacitors." J. Mater. Chem. A 5.1: 292-302, (2017.)
[12]  Morris, Stacy M., Pasquale F. Fulvio, and Mietek Jaroniec. "Ordered mesoporous alumina-supported metal oxides." J. Amer. Chem. Soc. 130.45: 15210-15216, (2008).
[13]  Gonçalves, Alexandre AS, et al. "One-pot synthesis of MeAl2O4 (Me= Ni, Co, or Cu) supported on γ-Al2O3 with ultralarge mesopores: enhancing interfacial defects in γ-Al2O3 to facilitate the formation of spinel structures at lower temperatures." Chem. Mater. 30.2: 436-446, (2018).
[14]  Kumari, Vandana, and Asim Bhaumik. "Mesoporous ZnAl 2 O 4: an efficient adsorbent for the removal of arsenic from contaminated water." Dalton Trans. 44.26: 11843-11851, (2015).
[15]  Feng, Shaojie, Wu Yang, and Zhongbing Wang. "Synthesis of porous NiFe2O4 microparticles and its catalytic properties for methane combustion." Mater. Sci. Eng.: B 176.18: 1509-1512, (2011).
[16]  Pal, Nabanita, Manidipa Paul, and Asim Bhaumik. "New mesoporous perovskite ZnTiO3 and its excellent catalytic activity in liquid phase organic transformations." Appl. Catal. A: 393.1-2 (2011): 153-160.
[17]  Cao, Jianliang, et al. "Mesoporous CuO/ZrO 2 nanocatalysts: synthesis, characterization and low-temperature CO oxidation activities." J. Porous Mater. 18.6 667-672, (2011).
[18] Baumann, Avery E., et al. "Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices." Commun. Chem. 2.1, 1-14, (2019).
[19] Zheng, Dong, et al. "Reduction mechanism of sulfur in lithium–sulfur battery: From elemental sulfur to polysulfide." J. Power Sources 301,312-316, (2016).
[20] Mehtab, Tahira, et al. "Metal-organic frameworks for energy storage devices: batteries and supercapacitors." J. Energy Storage 21, 632-646, (2019).
[21] Wu, Yang, et al. "Electron highways into nanochannels of covalent organic frameworks for high electrical conductivity and energy storage." ACS Appl. Mater. Interfaces 11.8 7661-7665. (2019).
[22] Xu, Guiyin, et al. "Exploring metal organic frameworks for energy storage in batteries and supercapacitors." Mater. today 20.4 191-209. (2017).
[23] Bon, Volodymyr. "Metal-organic frameworks for energy-related applications." Curr. Opin. Green Sustain. Chem. 4 44-49. (2017).
[24] Zhao, Ruo, et al. "Metal-organic frameworks for batteries." Joule 2.11 2235-2259. (2018).
[25] Eddaoudi, Mohamed, et al. "Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage." Science 295.5554 469-472. (2002).
[26] Zhou, Han, et al. "A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors." Sci. Rep. 6.1 1-11. (2016).
[27] Chen, Zhijie, et al. "Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs." Coord. Chem. Rev. 386 32-49. (2019).
[28] Sun, Lei, et al. "Million-fold electrical conductivity enhancement in Fe2 (DEBDC) versus Mn2 (DEBDC)(E= S, O)." J. Amer. Chem. Soc. 137.19 6164-6167. (2015).
[29] Kung, Chung-Wei, et al. "Inorganic “conductive glass” approach to rendering mesoporous metal–organic frameworks electronically conductive and chemically responsive." ACS Appl. Mater. Interfaces 10.36 30532-30540. (2018).
[30] Wang, Timothy C., et al. "Rendering high surface area, mesoporous metal–organic frameworks electronically conductive." ACS Appl. Mater. Interfaces 9.14 12584-12591. (2017).
[31] Isaeva, V. I., and L. M. Kustov. "Microwave activation as an alternative production of metal-organic frameworks." Russ. Chem. Bull. 65.9 2103-2114. (2016).
[32] Thomas-Hillman, Ieuan, et al. "Realising the environmental benefits of metal–organic frameworks: recent advances in microwave synthesis." J. Mater. Chem. A 6.25 11564-11581, (2018).
[33] Khan, Nazmul Abedin, and Sung Hwa Jhung. "Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction." Coord. Chem. Rev. 285 11-23. (2015).
[34] Zhang, Yidong, et al. "MoO2@ Cu@ C composites prepared by using polyoxometalates@ metal-organic frameworks as template for all-solid-state flexible supercapacitor." Electrochim. Acta 188 490-498,(2016.
[35] Lee, Ji‐Hoon, et al. "Metal‐Organic Framework Cathodes Based on a Vanadium Hexacyanoferrate Prussian Blue Analogue for High‐Performance Aqueous Rechargeable Batteries." Adv. Energy Mater. 7.2 1601491. (2017).
[36] Qian, Yuhong, et al. "A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries." Carbon 111 641-650. (2017).
[37] Wang, Buxue, et al. "Cr2O3@ TiO2 yolk/shell octahedrons derived from a metal–organic framework for high-performance lithium-ion batteries." Micropor. Mesopor. Mater. 203 86-90. (2015).
[38] Zou, Feng, et al. "MOF‐derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high‐rate lithium‐ion batteries." Adv. Mater. 26.38 6622-6628, (2014).
[39] Zhang, Xiaojie, et al. "Porous CoFe2O4 nanocubes derived from metal-organic frameworks as high-performance anode for sodium ion batteries." J. Colloid Interface Sci. J Colloid Interf Sci 499 145-150,(2017).
[40] Yin, Wei, et al. "Metal–organic framework derived ZnO/ZnFe2O4/C nanocages as stable cathode material for reversible lithium–oxygen batteries ACS Appl. Mater. Interfaces 7.8 4947-4954. (2015).
[41] Zheng, Xiangzhen, et al. "Metal–organic frameworks: Promising materials for enhancing electrochemical properties of nanostructured Zn 2 SnO 4 anode in Li-ion batteries." CrystEngComm 14.6 (2012): 2112-2116.
[42] Wu, Renbing, et al. "Porous Spinel Zn x Co3–x O4 hollow polyhedra templated for high-rate lithium-ion batteries." ACS nano 8.6 (2014): 6297-6303.
[43] Guo, Hong, et al. "General design of hollow porous CoFe 2 O 4 nanocubes from metal–organic frameworks with extraordinary lithium storage." Nanoscale 6.24 (2014): 15168-15174.
[44] Wang, Buxue, et al. "Cr2O3@ TiO2 yolk/shell octahedrons derived from a metal–organic framework for high-performance lithium-ion batteries." Micropor. Mesopor. Mater. 203 (2015): 86-90.
[45] Guo, Hong, et al. "Self-assembly formation of hollow Ni-Fe-O nanocage architectures by metal-organic frameworks with high-performance lithium storage." Sci. rep. 5.1 (2015): 1-10.
[46] Zheng, Fangcai, et al. "Metal–organic framework-derived porous Mn 1.8 Fe 1.2 O 4 nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries." J. Mater. Chem. A 3.6 (2015): 2815-2824.
[47] Yang, Xia, et al. "Lithium ion battery application of porous composite oxide microcubes prepared via metal-organic frameworks." J. Power Sourc. 284 (2015): 109-114.
[48] Zhu, Dequan, et al. "MOF-derived self-assembled ZnO/Co3O4 nanocomposite clusters as high-performance anodes for lithium-ion batteries." Dalton trans. 44.38 (2015): 16946-16952.
[49] Sambandam, Balaji, et al. "Metal–organic framework-combustion: a new, cost-effective and one-pot technique to produce a porous Co 3 V 2 O 8 microsphere anode for high energy lithium ion batteries." J. Mater. Chem. A 4.38 (2016): 14605-14613.
[50] Xu, Wangwang, et al. "Integrated Co3O4/TiO2 composite hollow polyhedrons prepared via cation-exchange metal-organic framework for superior lithium-ion batteries." Electrochim. Acta 222 (2016): 1021-1028.
[51] Xia, Yuan, et al. "MOF‐derived porous NixFe3‐xO4 nanotubes with excellent performance in lithium‐ion batteries." ChemElectroChem 3.2 (2016): 299-308.
[52] Wang, Lijuan, et al. "MOF-templated thermolysis for porous CuO/Cu2O@ CeO 2 anode material of lithium-ion batteries with high rate performance." J. Mater. Sci. 52.12 (2017): 7140-7148.
[53] Huang, Gang, et al. "Metal–organic framework derived Fe 2 O 3@ NiCo 2 O 4 porous nanocages as anode materials for Li-ion batteries." Nanoscale 6.10 (2014): 5509-5515.
[54] Huang, Gang, et al. "Hierarchical NiFe 2 O 4/Fe 2 O 3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes." J. Mater. Chem. A 2.21 (2014): 8048-8053.
[55] Huang, Gang, et al. "Core–Shell NiFe2O4@ TiO2 Nanorods: An Anode Material with Enhanced Electrochemical Performance for Lithium‐Ion Batteries." Chemistry–A Eur. J. 20.35 (2014): 11214-11219.
[56] Sun, Chencheng, et al. "MOF-directed templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithium-ion battery anodes." J. Mater. Chem. A 3.16 (2015): 8483-8488.
[57] Yang, Xia, et al. "Preparation of porous ZnO/ZnFe2O4 composite from metal organic frameworks and its applications for lithium ion batteries." Chem. Eng. J. 308 (2017): 340-346.
[58] Cai, Daoping, Hongbing Zhan, and Taihong Wang. "MOF-derived porous ZnO/ZnFe2O4 hybrid nanostructures as advanced anode materials for lithium ion batteries." Mater. Lett. 197 (2017): 241-244.
[59] Zou, Feng, et al. "MOF‐derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high‐rate lithium‐ion batteries."  Adv. Mater. 26.38 (2014): 6622-6628.
[60] Wu, Jiafeng, et al. "Zn–Fe–ZIF-derived porous ZnFe 2 O 4/C@ NCNT nanocomposites as anodes for lithium-ion batteries." J. Mater. Chem. A 3.15 7793-7798,(2015).
[61] Ma, Jingjing, et al. "Porous carbon-coated CuCo 2 O 4 concave polyhedrons derived from metal–organic frameworks as anodes for lithium-ion batteries." J Mater. Chem. A 3.22 12038-12043, (2015).
[62] Zhao, Fei, Jianliya Tian, and Baofeng Wang. "Binary metal organic framework derived CoxFe3− xO4/C for lithium ion batteries." Mater. Lett. 161 104-107, (2015).
[63] Li, Zhaoqiang, and Longwei Yin. "Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo 2 O 4–ZnO–C on nickel foam as anodes for high performance lithium ion batteries." J. Mater. Chem. A 3.43 21569-21577. (2015).
[64] Ge, Xiaoli, et al. "Metal–organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery." ACS Appl. Mater. Interfaces 7.48 26633-26642,(2015).
[65] Zhao, Zhi-Wei, et al. "Carbon-Coated Fe3O4/VO x Hollow Microboxes Derived from Metal–Organic Frameworks as a High-Performance Anode Material for Lithium-Ion Batteries." ACS Appl. Mater. Interfaces 9.4 3757-3765, (2017.
[66] Tang, Bo, et al. "Carbon-coated Li4Ti5O12 tablets derived from metal-organic frameworks as anode material for lithium-ion batteries." J. Alloys Comp. 708 6-13,(2017).
[67] Gan, Qingmeng, et al. "MOF-derived carbon coating on self-supported ZnCo 2 O 4–ZnO nanorod arrays as high-performance anode for lithium-ion batteries." J. Mater. Sci. 52.13 (2017): 7768-7780.
[68] Zhang, Xiaojie, et al. "Porous CoFe2O4 nanocubes derived from metal-organic frameworks as high-performance anode for sodium ion batteries." J. colloid interf. Sci. 499,  145-150, (2017).
[69] Guo, Yuan, et al. "MgFe2O4 hollow microboxes derived from metal-organic-frameworks as anode material for sodium-ion batteries." Mater. Lett. 199 (2017): 101-104.
[70] Zhang, Jian, et al. "Porous cobalt–manganese oxide nanocubes derived from metal organic frameworks as a cathode catalyst for rechargeable Li–O 2 batteries." Nanoscale 7.2 720-726, (2015).
[71] Yin, Wei, et al. "Metal–organic framework derived ZnO/ZnFe2O4/C nanocages as stable cathode material for reversible lithium–oxygen batteries." ACS Appl. Mater. Interfaces 7.8 4947-4954, (2015).
[72]  Wang, Yuan-Yuan, et al. "Diamondoid-structured polymolybdate-based metal–organic frameworks as high-capacity anodes for lithium-ion batteries." Chem. Commun. 53.37 5204-5207, (2017).
[73]  Zhou, Xin, et al. "Nanosheet-assembled ZnFe2O4 hollow microspheres for high-sensitive acetone sensor." ACS Appl. Mater. Interfaces 7.28 15414-15421. (2015).
[74]  Zhou, Xin, et al. "Nanosheet-assembled ZnFe2O4 hollow microspheres for high-sensitive acetone sensor." ACS Appl. Mater. Interfaces 7.28, 15414-15421. (2015).
[75]  Zheng, Xiangzhen, et al. "Metal–organic frameworks: Promising materials for enhancing electrochemical properties of nanostructured Zn 2 SnO 4 anode in Li-ion batteries." CrystEngComm 14.6 2112-2116, (2012).
[76]  Wu, Renbing, et al. "Porous spinel Zn x Co3–x O4 hollow polyhedra templated for high-rate lithium-ion batteries." ACS nano 8.6,  6297-6303. (2014).
[77]  Sun, Chencheng, et al. "MOF-directed templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithium-ion battery anodes." J. Mater. Chem. A 3.16, 8483-8488,(2015).
[78]  Huang, Gang, et al. "Metal–organic framework derived Fe 2 O 3@ NiCo 2 O 4 porous nanocages as anode materials for Li-ion batteries." Nanoscale 6.10, 5509-5515,(2014).
[79]  Gu, Xin, et al. "Coaxial MnO/N-doped carbon nanorods for advanced lithium-ion battery anodes." J. Mater. Chem. A 3.3, 1037-1041, (2015).
[80]  Guo, Hong, et al. "General design of hollow porous CoFe 2 O 4 nanocubes from metal–organic frameworks with extraordinary lithium storage." Nanoscale 6.24, 15168-15174, (2014).
[81]  Xia, Yuan, et al. "MOF‐derived porous NixFe3‐xO4 nanotubes with excellent performance in lithium‐ion batteries." ChemElectroChem 3.2 299-308, (2016).
[82]  Huang, Gang, et al. "Core–Shell NiFe2O4@ TiO2 Nanorods: An Anode Material with Enhanced Electrochemical Performance for Lithium‐Ion Batteries." Chem–A Eur. J. 20.35 11214-11219, (2014).
[83]  Zou, Feng, et al. "MOF‐derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high‐rate lithium‐ion batteries." Adv. Mater. 26.38, 6622-6628, (2014).
[84]  Jin, Lina, et al. "Synthesis of porous In2O3/carbon composites derived from metal-organic frameworks for high performance Li-ion batteries." Mater. Lett. 199 176-179, (2017).
[85]  Huang, Gang, et al. "Yolk@ Shell or Concave Cubic NiO–Co3O4@ C Nanocomposites Derived from Metal–Organic Frameworks for Advanced Lithium-Ion Battery Anodes." Inorg. Chem. 56.16 9794-9801, (2017).
[86]  Li, Mengxiong, et al. "A high-performance Pt–Co bimetallic catalyst with polyethyleneimine decorated graphene oxide as support for hydrolysis of ammonia borane." RSC adv.  4.77 41152-41158, (2014).
[87]  Kang, Wenpei, et al. "Porous CuCo 2 O 4 nanocubes wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes." Nanoscale 6.12, 6551-6556. (2014).
[88]  Li, Zhaoqiang, and Longwei Yin. "Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4–ZnO–C on nickel foam as anodes for high performance lithium ion batteries." J. Mater. Chem. A 3.43 21569-21577, (2015).
[89] Jung, Hun-Gi, et al. "Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries." J. power sourc. 196.18 7763-7766, (2011).
[90]  Zhang, Liguo, et al. "Amorphous FeF 3/C nanocomposite cathode derived from metal–organic frameworks for sodium ion batteries." RSC Adv.   7.39 24004-24010, (2017).
[91]  Qu, Qunting, et al. "MOF-derived microporous carbon as a better choice for Na-ion batteries than mesoporous CMK-3." RSC Adv.   4.110, 64692-64697, (2014).
[92]  Li, Weihan, et al. "Confined amorphous red phosphorus in MOF‐derived N‐doped microporous carbon as a superior anode for sodium‐ion battery." Adv. Mater. 29.16 1605820, (2017).
[93]  Dong, Shihua, et al. "ZnS-Sb2S3@ C core-double shell polyhedron structure derived from metal–organic framework as anodes for high performance sodium ion batteries." ACS Nano 11.6 6474-6482, (2017).
 [94]  Zhang, Xiaojie, et al. "MgFe2O4/reduced graphene oxide composites as high-performance anode materials for sodium ion batteries." Electrochim. Acta 180, 616-621, (2015).
[95]  Wu, Lin, et al. "Improved sodium-storage performance of stannous sulfide@ reduced graphene oxide composite as high capacity anodes for sodium-ion batteries." J. Power Sourc. 293 ,784-789, (2015).
[96]  Zheng, Dong, et al. "Reduction mechanism of sulfur in lithium–sulfur battery: From elemental sulfur to polysulfide." J. Power Sourc. 301 312-316, (2016).
[97] Mehtab, Tahira, et al. "Metal-organic frameworks for energy storage devices: batteries and supercapacitors." J. Energy Storage. 21, 632-646. (2019).
[98] Wu, Yang, et al. "Electron highways into nanochannels of covalent organic frameworks for high electrical conductivity and energy storage." ACS Appl. Mater. Interfaces 11.8 7661-7665,(2019).
[99] Xu, Guiyin, et al. "Exploring metal organic frameworks for energy storage in batteries and supercapacitors." Mater. today 20.4 191-209, (2017).
[100] Yue, Yanfeng, et al. "A POM–organic framework anode for Li-ion battery." J. Mater. Chem. A 3.45 ,22989-22995, (2015).
[101] Wei, Tao, et al. "POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage." Nano Energy 34, 205-214, (2017).
[102] Park, Jihye, et al. "Stabilization of hexaaminobenzene in a 2D conductive metal–organic framework for high power sodium storage." J. Amer. Chem. Soc. 140.32 10315-10323, (2018).
[103] Li, Zhen, Jintao Zhang, and Xiong Wen Lou. "Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries." Angew. Chem. 127.44 (2015): 13078-13082.
[104] Li, Chao, et al. "Ultrathin manganese-based metal–organic framework nanosheets: low-cost and energy-dense lithium storage anodes with the coexistence of metal and ligand redox activities." ACS Appl. Mater. Interfaces  9.35 29829-29838, (2017).
[105] Wang, Yan, et al. "Aluminum fumarate-based metal organic frameworks with tremella-like structure as ultrafast and stable anode for lithium-ion batteries." Nano Energy 39, 200-210. (2017).
[106] Xiao, Jie, et al. "Hierarchically porous graphene as a lithium–air battery electrode." Nano let. 11.11 5071-5078. (2011).
[107] Wu, Doufeng, et al. "Metal–organic frameworks as cathode materials for Li–O2 batteries." Adv. Mater. 26.20 3258-3262, (2014).
[108] Zhang, Jian, et al. "Porous cobalt–manganese oxide nanocubes derived from metal organic frameworks as a cathode catalyst for rechargeable Li–O 2 batteries." Nanoscale 7.2 720-726, (2015).
[109] Xia, Shubiao, et al. "An inorganic–organic hybrid supramolecular framework as a high-performance anode for lithium-ion batteries." Dalton Trans. 47.15, 5166-5170. (2018).
[110] Rosenman, Ariel, et al. "Review on Li‐sulfur battery systems: An integral perspective." Adv. Energy Mater. 5.16 (2015): 1500212.
[111] Zhou, Junwen, et al. "Rational design of a metal–organic framework host for sulfur storage in fast, long-cycle Li–S batteries." Energy Environ. Sci. 7.8 2715-2724. (2014).
[112] Jiang, Haoqing, et al. "Metal–organic frameworks for high charge–discharge rates in lithium–sulfur batteries." Angew. Chem. 130.15 3980-3985, (2018).
[113] Demir-Cakan, Rezan, et al. "Cathode composites for Li–S batteries via the use of oxygenated porous architectures." J. Amer. Chem. Soc. 133.40 16154-16160. (2011).
[114] Wang, Ziqi, et al. "Mixed-metal–organic framework with effective Lewis acidic sites for sulfur confinement in high-performance lithium–sulfur batteries." ACS Appl. Mater. Interfaces  7.37, 20999-21004. (2015).
[115] Bai, Songyan, et al. "Metal–organic framework-based separator for lithium–sulfur batteries." Nature Energy 1.7 1-6, (2016).
[116] Jin, Yan, et al. "Fe-based metal-organic framework and its derivatives for reversible lithium storage." J Mater. Sci. Technol. 33.8, 768-774, (2017).
[117] He, Jiarui, et al. "Three-dimensional hierarchical C-Co-N/Se derived from metal-organic framework as superior cathode for Li-Se batteries." J. Power Sourc. 363 103-109, (2017).
[118] Park, Seung-Keun, Jin-Sung Park, and Yun Chan Kang. "Metal-organic-framework-derived N-doped hierarchically porous carbon polyhedrons anchored on crumpled graphene balls as efficient selenium hosts for high-performance lithium–selenium batteries ACS Appl. Mater. Interfaces  10.19 16531-16540,(2018).
[119] Liu, Xiuxiu, et al. "Cobalt-based layered metal–organic framework as an ultrahigh capacity supercapacitor electrode material." ACS Appl. Mater. Interfaces   8.7 (2016): 4585-4591.
[120] Wang, Lu, et al. "Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI." J. Amer. Chem. Soc. 137.15 (2015): 4920-4923.
[121] Qu, Chong, et al. "Functionalized bimetallic hydroxides derived from metal–organic frameworks for high-performance hybrid supercapacitor with exceptional cycling stability." ACS Energy Letters 2.6 (2017): 1263-1269.
[122] Mahmood, Asif, et al. "Nanostructured electrode materials derived from metal–organic framework xerogels for high-energy-density asymmetric supercapacitor ACS Appl. Mater. Interfaces  8.3, 2148-2157, (2016).
[123] Li, Guo-Chang, et al. "Porous Co3O4 microflowers prepared by thermolysis of metal-organic framework for supercapacitor." Mater. Chem. Phys. 168 (2015): 127-131.
[124] Wang, Zhuo, et al. "One-step accurate synthesis of shell controllable CoFe 2 O 4 hollow microspheres as high-performance electrode materials in supercapacitor." Nano Res,  9.7, 2026-2033, (2016).
[125] Hou, Xiang-Yang, et al. "Gas uptake and supercapacitor performance of a highly connected porous Co-metal–organic framework induced by ligand bulk." Cryst. Growth & Des. 17.6, 3229-3235, (2017).
[126] Liu, Bo, et al. "Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor." Carbon 48.2, 456-463, (2010).
[127] Chen, Siru, et al. "Porous ZnCo 2 O 4 nanoparticles derived from a new mixed-metal organic framework for supercapacitors." Inorg. Chem. Frontiers 2.2, 177-183. (2015).
[128] Zhang, Yidong, et al. "Polyoxometalates@ metal-organic frameworks derived porous MoO3@ CuO as electrodes for symmetric all-solid-state supercapacitor." Electrochim. Acta 191 (2016): 795-804.
[129] Chen, Siru, et al. "Rational design and synthesis of Ni x Co 3− x O 4 nanoparticles derived from multivariate MOF-74 for supercapacitors." J. Mater. Chem. A 3.40 (2015): 20145-20152.
[130] Yu, Dongbo, et al. "Decorating nanoporous ZIF-67-derived NiCo 2 O 4 shells on a Co 3 O 4 nanowire array core for battery-type electrodes with enhanced energy storage performance." J. Mater. Chem. A 4.28 (2016): 10878-10884.
[131] Yu, Feng, et al. "Preparation of Zn0. 65Ni0. 35O composite from metal-organic framework as electrode material for supercapacitor." Mater. Lett. 194, 185-188, (2017).
[132] Zhang, Longmei, et al. "Porous ZnO/NiO microspherical structures prepared by thermolysis of heterobimetallic metal-organic framework as supercapacitor electrodes." J. Nanosci. Nanotechnol 17.4 2571-2577, (2017).
[133] Li, Guo-Chang, et al. "MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors." Dalton Trans. 45.34, 13311-13316, (2016).
[134] Dong, Yanying, et al. "Facile synthesis of hierarchical nanocage MnCo2O4 for high performance supercapacitor." Electrochim. Acta 225, 39-46, (2017).
[135] X.-W. Hu, S. Liu, B.-T. Qu, X.-Z. You, ACS Appl. Mater. Interfaces, 7, 9972, (2015).
[136] Zhang, Yidong, et al. "MoO2@ Cu@ C composites prepared by using polyoxometalates@ metal-organic frameworks as template for all-solid-state flexible supercapacitor." Electrochim. Acta 188, 490-498, (2016).
[137] Guo, Wei, et al. "Nanowire Derived from Co-based metal-organic Frameworks and Its Capacitive Behavior"Int. J. Electrochem. Sci. 11, 9216-9227, (2016).
[138] Zeng, Wei, et al. "Metal–organic-framework-derived ZnO@ C@ NiCo 2 O 4 core–shell structures as an advanced electrode for high-performance supercapacitors." J. Mater. Chem. A 4.21, 8233-8241, (2016).
[139] Guan, Cao, et al. "Rational design of metal‐organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis." Adv. Energy Mater. 7.12 (2017): 1602391.
[140] Zeng, Wei, et al. "Metal–organic-framework-derived ZnO@ C@ NiCo 2 O 4 core–shell structures as an advanced electrode for high-performance supercapacitors." J. Mater. Chem. A 4.21, 8233-8241, (2016).
[141] Salunkhe, Rahul R., Yusuf V. Kaneti, and Yusuke Yamauchi. "Metal–organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects." ACS Nano 11.6, 5293-5308, (2017).
[142] Chen, Siru, et al. "Porous ZnCo 2 O 4 nanoparticles derived from a new mixed-metal organic framework for supercapacitors." Inorg. Chem. Frontiers 2.2, 177-183, (2015).
[143] Chen, Siru, et al. "Rational design and synthesis of Ni x Co 3− x O 4 nanoparticles derived from multivariate MOF-74 for supercapacitors." J. Mater. Chem. A 3.40: 20145-20152, (2015).
[144] Zhang, Yidong, et al. "Polyoxometalates@ metal-organic frameworks derived porous MoO3@ CuO as electrodes for symmetric all-solid-state supercapacitor." Electrochim. Acta 191 795-804, (2016).
[145] Li, Guo-Chang, et al. "MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors." Dalton Trans.  45.34 13311-13316, (2016).
[146] Tian, Jiahui, et al. "Porous WO3@ CuO composites derived from polyoxometalates@ metal organic frameworks for supercapacitor." Mater. Lett. 206 91-94, (2017).