مدیریت نور در سلول خورشیدی رنگدانه‌ای با استفاده از لایه جابجاکننده طول‌موج فوتون

نوع مقاله : مقاله پژوهشی

نویسنده

شیراز میدان ارم دانشگاه شیراز دانشکده فناوری های نوین اتاق ۱۰۲

چکیده

جابجا کردن طیف نور فرودی بر سلول خورشیدی رنگدانه‌ای راهکاری مؤثر برای جبران جذب ضعیف رنگدانه در برخی طول‌موج‌ها محسوب می‌شود. این کار با استفاده از مواد نورتاب با طیف جذبی مکمل طیف جذب جاذب نور در سلول خورشیدی انجام می‌شود. همچنین طیف تابش ماده نورتاب باید منطبق بر طول موج جذب سلول خورشیدی باشد. بدین منظور ماده نورتاب در خارج و یا داخل سلول خورشیدی و در ساختارهای مختلف مورد استفاده قرار می‌گیرد. در این مقاله این راهکار و ملزومات اجرای آن شرح داده شده است. به علاوه، ساختارهای ممکن مورد استفاده با این هدف به همراه گروه‌های مختلف مواد نورتاب معرفی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Photon Management in Dye Sensitized Solar Cell Using Photon Conversion Layer

چکیده [English]

Incident photon conversion is an effective strategy to compensate the low absorption in dye sensitized solar cell (DSSC). Photon conversion strategy can be done using luminescent materials. The luminescent material should absorb photons in wavelength range which the DSSC has low external quantum efficiency, while it should emit photons in wavelength range which the DSSC has high external quantum efficiency. This strategy is more applicable to DSSC compared to other kinds of solar cell due to the vast variety of the dye molecules used in DSSC. In addition, the transparency of the DSSC provides the opportunity to apply the photon conversion layer in different architectures; inside or outside the DSSC. In this article, the photon conversion strategy and its requirements are discussed. Different DSSC structures with photon conversion layer and suitable luminescent materials are also introduced. The results show that the choice of the luminescent material for each structure is the most important parameter governing the performance of the DSSC with photon conversion layer

کلیدواژه‌ها [English]

  • Dye sensitized Solar Cell
  • Photon Management
  • Photon Conversion
  • Quantum Dot
  • Luminescence
[۱]          J. Ji, H. Zhou, Y.K. Eom, C.H. Kim, H.K. Kim, Adv. Energy Mater., 10, 2000124 (2020).
[2]          H.-P. Wu, Z.-W. Ou, T.-Y. Pan, C.-M. Lan, W.-K. Huang, H.-W. Lee, N.M. Reddy, C.-T. Chen, W.-S. Chao, C.-Y. Yeh, E.W.-G. Diau, Energy Environ. Sci., 5, 9843–9848 (2012).
[3]          N. Ghazyani, M. H. Majles Ara, F. Tajabadi, A. Dabirian, R. Mohammadpour, N. Taghavinia, RSC Advance, 4, 3621-3626, 2014.
[4]          M. Dürr, A. Bamedi, A. Yasuda, G. Nelles, Appl. Phys. Lett., 84,  3397, (2004).
[5]          J.I. Basham, G.K. Mor, C.A. Grimes, ACS Nano., 4, 1253–1258, (2010).
[6]          S. Colodrero, A. Mihi, L. Häggman, M. Ocaña, G. Boschloo, A. Hagfeldt, H. Míguez,  Adv. Mater., 21, 764–770, (2009).
[7]          E. Klampaftis, D. Ross, K.R. McIntosh, B.S. Richards, Sol. Energy Mater. Sol. Cells., 93, 1182–1194, (2009).
[8]          X. Huang, S. Han, W. Huang, X. Liu, Chem. Soc. Rev., 42, 173–201, (2013).
[9]          J. Liu, K. Wang, W. Zheng, W. Huang, C. Li, X. You, Prog. Photovoltaics Res. Appl., 21, 668-675, (2013).
[10]        R. Rothemund, S. Kreuzer, T. Umundum, G. Meinhardt, T. Fromherz, W. Jantsch, Energy Procedia., 10, 83–87, (2011).
[11]        C.P. Thomas,  a. B. Wedding, S.O. Martin, Sol. Energy Mater. Sol. Cells., 98, 455–464, (2012).
[12]        D.Z. Garbuzov, S.R. Forrest,  a. G. Tsekoun, P.E. Burrows, V. Bulović, M.E. Thompson, J. Appl. Phys., 80, 4644, (1996).
[13]        Z. Cheng, F. Su, L. Pan, M. Cao, Z. Sun, J. Alloys Compd., 494, 7–10, (2010).
[14]        D. Ross, E. Klampaftis, J. Fritsche, M. Bauer, B.S. Richards, Sol. Energy Mater. Sol. Cells., 103, 11–16 (2012).
[15]        B.S. Richards, K.R. Mcintosh, Prog. Photovolt Res. Appl., 15, 27–34, (2007).
[16]        E. Klampaftis, D. Ross, S. Seyrling, A.N. Tiwari, B.S. Richards, Sol. Energy Mater. Sol. Cells., 101, 62–67, (2012).
[17]        B. Hong, Sol. Energy Mater. Sol. Cells., 80, 417–432, (2003).
[18]        S.D. Hodgson, W.S.M. Brooks, A.J. Clayton, G. Kartopu, V. Barrioz, S.J.C. Irvine, Nano Energy, 2, 21–27, (2013).
[19]        D. Alonso-álvarez, D. Ross, B.S. Richards, Proceeding Photovolt. Spec. Conf., 5989, 5989, (2009).
[20]        G. Seybold, Dye. Pigment., 11, 303–317, (1989).
[21]        W.G.J.H.M.G.J.H.M. van Sark,  a. Meijerink, R.E.I.E.I. Schropp, J. a. M. van Roosmalen, E.H. Lysen, Sol. Energy Mater. Sol. Cells., 87, 395–409, (2005).
[22]        C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. Del Canizo, I. Tobias, Sol. Energy Mater. Sol. Cells., 91, 238–249, (2007).
[23]        W. Yen, M. Weber, Inorganic phosphors: compositions, preparation and optical properties, CRC Press, 2004.
[24]        H.J. Hovel, R.T. Hodgson, J.M. Woodall, Sol. Energy Mater., 2, 19–29, (1979).
[25]        Z. Zhou, J. Wang, F. Nan, C. Bu, Z. Yu, W. Liu, S. Guo, H. Hu, X.-Z. Zhao, Nanoscale, 6, 2052–5, (2014).
[26]        G.-B. Bin Shan, G.P. Demopoulos, Adv. Mater., 22, 4373–7, (2010).
[27]        G.-B. Shan, H. Assaaoudi, G.P. Demopoulos, ACS Appl. Mater. Interfaces., 3, 3239–3243, (2011).
[28]        B.S. Richards, Sol. Energy Mater. Sol. Cells., 90, 1189–1207, (2006).
[29]        T. Trupke, M.A. Green, P. Würfel, J. Appl. Phys., 92, 1668–1674, (2002).
[30]        B.S. Richards, Sol. Energy Mater. Sol. Cells., 90, 2329–2337, (2006).
[31]        V. Badescu, A. De Vos, J. Appl. Phys., 102, 073102, (2007).
[32]        R. Rothemund, Sol. Energy Mater. Sol. Cells., 120, 616–621, (2014).
[33]        a. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, B.S. Richards, Sol. Energy Mater. Sol. Cells., 122, 8–14, (2014).
[34]        J. Liu, Q. Yao, Y. Li, Appl. Phys. Lett., 88, 173119, (2006).
[35]        D. Li, C. Ding, H. Shen, Y. Liu, Y. Zhang, M. Li, J. Yan, J. Phys. D. Appl. Phys., 43, 015101, (2010).
[36]        J. Wu, G. Xie, J. Lin, Z. Lan, M. Huang, Y. Huang,  J. Power Sources, 195, 6937–6940, (2010).
[37]        H. Hafez, M. Saif, M.S. a. S.A. Abdel-Mottaleb, J. Power Sources., 196, 5792–5796, (2011).
[38]        Z. Hosseini, W.-K.K. Huang, C.-M.M. Tsai, T.-M.M. Chen, N. Taghavinia, E.W.-G.G. Diau, ACS Appl. Mater. Interfaces., 5, 5397–402, (2013).
[39]        Y. Li, K. Pan, G. Wang, B. Jiang, C. Tian, W. Zhou, Y. Qu, S. Liu, L. Feng, H. Fu, Dalt. Trans., 42, 7971–7979, (2013).
[40]        M.J. Lim, Y.N. Ko, Y. Chan Kang, K.Y. Jung, RSC Adv., 4, 10039, (2014).