کاربرد نانوساختارهای کربنی در تشخیص و درمان سرطان پستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه شهید بهشتی تهران

2 مرکز پروتئین دانشگاه شهید بهشتی

چکیده

کاربرد بیولوژیکی نانوذرات یک حوزه به سرعت در حال توسعه فن آوری نانو است که امکانات جدیدی را در تشخیص و درمان سرطان های انسان به وجود می آورد. نانوذرات کربنی یک عضو نوظهور از خانواده نانومواد کربنی هستند که با عناوین نقاط کوانتومی کربنی، نقاط کوانتومی گرافنی و نانونقطه های کربنی نیز خوانده می شوند. این نانو ساختارها که به طور تصادفی کشف شدند، به علت ماهیت غیرسمی، سازگاری با محیط زیست، پایداری اپتیکی بالا، اکنون به طور گسترده در تصویربرداری از سلولهای زنده، مهندسی زیستی و رسانش هدفمند دارو و دیگر کاربرد های زیست پزشکی مورد استفاده قرار می گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Application of carbon nanostructures in the diagnosis and treatment of breast cancer

[1]           T. Kong, L. Hao, Y. Wei, X. Cai, and B. Zhu, “Doxorubicin conjugated carbon dots as a drug delivery system for human breast cancer therapy,” Cell Prolif., 51, 5, 1–9, )2018(.
[2]           Y. Zheng, Z. Li, H. Chen, and Y. Gao, Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy, vol. 144. )2020(.
[3]           L. Wang and J. Yan, “Superficial synthesis of photoactive copper sulfide quantum dots loaded nano-graphene oxide sheets combined with near infrared (NIR) laser for enhanced photothermal therapy on breast cancer in nursing care management,” J. Photochem. Photobiol. B Biol., 192, 68–73, )2019(.
[4]           Y. Li et al., “Phototherapy using immunologically modified carbon nanotubes to potentiate checkpoint blockade for metastatic breast cancer,” Nanomedicine Nanotechnology, Biol. Med., 18, 44–53, )2019(.
[5]           C. Han et al., “Multifunctional iron oxide-carbon hybrid nanoparticles for targeted fluorescent/MR dual-modal imaging and detection of breast cancer cells,” Anal. Chim. Acta, 1067, 115–128, (2019).
[6]           S. rong Ji et al., “Carbon nanotubes in cancer diagnosis and therapy,” Biochim. Biophys. Acta - Rev. Cancer, 1806, 1, 29–35, (2010).
[7]           M. Rahmandoust and A. Öchsner, “Influence of structural imperfections and doping on the mechanical properties of Single-Walled Carbon Nanotubes,” J. Nano Res., 6, 185–196, (2009).
[8]           Y. Chen, D. Gao, Y. Wang, S. Lin, and Y. Jiang, “A novel 3D breast-cancer-on-chip platform for therapeutic evaluation of drug delivery systems,” Anal. Chim. Acta, 1036, 97–106, (2018).
[9]           H. Wang et al., “Update on Nanoparticle-Based Drug Delivery System for Anti-inflammatory Treatment,” Front. Bioeng. Biotechnol., vol. 9, no. February, 1–9, (2021).
[10]         M. Afzal et al., “Nanomedicine in treatment of breast cancer – A challenge to conventional therapy,” Semin. Cancer Biol., 69, 279–292, (2021).
[11]         Y. Sun, X. Ma, and H. Hu, “Application of nano-drug delivery system based on cascade technology in cancer treatment,” Int. J. Mol. Sci., 22, 11-20, (2021).
[12]         M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O’Regan, “Emerging use of nanoparticles in diagnosis and treatment of breast cancer,” Lancet Oncol., 7, 657–667, (2006).
[13]         M. Gisbert-Garzarán et al., “Engineered pH-Responsive Mesoporous Carbon Nanoparticles for Drug Delivery,” ACS Appl. Mater. Interfaces, 12, 14946–14957, (2020).
[14]         A. Mewada, S. Pandey, M. Thakur, D. Jadhav, and M. Sharon, “Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging,” J. Mater. Chem. B, 2, 6, 698–705, (2014).
[15]         M. Rahmandoust and A. Ochsner, “Young’s modulus variation of carbon nanotubes due to defects associated with atomic reconstruction of random vacancies,” J. Comput. Theor. Nanosci., 12, 2281–2286, (2015).
[16]         R. S. A. Sonthanasamy, N. M. N. Sulaiman, L. L. Tan, and A. M. Lazim, “Comprehensive spectroscopic studies of synergism between Gadong starch based carbon dots and bovine serum albumin,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 218, pp. 85–96, 2019.
[17]         H. Behboudi et al., “Carbon quantum dots in nanobiotechnology,” Adv. Struct. Mater., 104, 145–179, (2019).
[18]         A. M. Ealias and M. P. Saravanakumar, “A review on the classification, characterisation, synthesis of nanoparticles and their application,” IOP Conf. Ser. Mater. Sci. Eng., 263, 3, (2017).
[19]         S. K. Debnath and R. Srivastava, “Drug Delivery With Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects,” Front. Nanotechnol., vol. 3, no. April, 1–22, (2021).
[20]         M. Rahmandoust, “Computational evaluation of the mechanical properties of synthesized graphene quantum dots under consideration of defects,” Carbon Lett., (2020).
[21]         S. Mavalizadeh, M. Rahmandoust, and A. Öchsner, “Numerical investigation of the overall stiffness of carbon nanotubebased composite materials,” J. Nano Res., 13,13-23, (2011).
[22]         A. Awadallah-f and S. Al-muhtaseb, “Carbon Nanoparticles-Decorated Carbon Nanotubes,” Sci. Rep., 002, 1–7, (2020).
[23]         H. Ali, S. Ghosh, and N. R. Jana, “Fluorescent carbon dots as intracellular imaging probes,” Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology, 12, 1–15, (2020).
[24]         A. M. Lazim, R. S. A. Sonthanasamy, and T. L. Ling, “Binding study of carbon dots to bovine serum albumin,” AIP Conf. Proc., 2111, (2019).
[25]         R. Kandra and S. Bajpai, “Synthesis, mechanical properties of fluorescent carbon dots loaded nanocomposites chitosan film for wound healing and drug delivery,” Arab. J. Chem., 13, 4882–4894, (2020).
[26]         P. Namdari, B. Negahdari, and A. Eatemadi, “Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review,” Biomed. Pharmacother., 87, 209–222, (2017).
[27]         X. A. and X. Y. jun Gong, “A novel rapid and green synthesis of hily luminescence carbon dots with good biocompatibility for cell imaging, 12, 35-40, (2008).
[28]         Z. Bagheri et al., “New insight into the concept of carbonization degree in synthesis of carbon dots to achieve facile smartphone based sensing platform,” Sci. Rep., 7, 11013, 1–11, (2017).
[29]         Y. Wang and A. Hu, “Carbon quantum dots : synthesis , properties and applications,” J. Mater. Chem. C Mater. Opt. Electron. devices, 2, 6921–6939, (2014).
[30]         H. Koulivand, A. Shahbazi, V. Vatanpour, and M. Rahmandoust, “Development of carbon dot-modified polyethersulfone membranes for enhancement of nanofiltration, permeation and antifouling performance,” Sep. Purif. Technol., 230, 12-18, (2020).
[31]         A. Mohammadi, M. Rahmandoust, F. Mirzajani, A. Azadkhah, and S. Mohammad, “Optimization of the interaction of graphene quantum dots with lipase for biological applications,” no. January, pp. 1–13, 2020.
[32]         H. Koulivand, A. Shahbazi, V. Vatanpour, and M. Rahmandoost, “Novel antifouling and antibacterial polyethersulfone membrane prepared by embedding nitrogen-doped carbon dots for efficient salt and dye rejection,” Mater. Sci. Eng. C, 111, (2020).
[33]         F. Li, C. Liu, J. Yang, Z. Wang, W. Liu, and F. Tian, “Mg / N double doping strategy to fabricate extremely high luminescent carbon dots for bioimaging,” RSC Adv., 3201–3205, (2014).
[34]         K. S. Prasad, R. Pallela, D. Kim, and Y. Shim, “Microwave-Assisted One-Pot Synthesis of Metal-Free Nitrogen and Phosphorus Dual-Doped Nanocarbon for Electrocatalysis and Cell Imaging,” 557–564, (2013).
[35]         A. Zhao, Z. Chen, X. Qu, C. Zhao, and N. Gao, “Recent advances in bioapplications of C-dots,” Carbon N. Y., 85, 309–327, (2014).
[36]         D. Radenkovic, H. Kobayashi, E. Remsey-Semmelweis, and A. M. Seifalian, “Quantum dot nanoparticle for optimization of breast cancer diagnostics and therapy in a clinical setting,” Nanomedicine Nanotechnology, Biol. Med., 12, 1581–1592, (2016).
[37]         J. Dong, X. Yao, S. Sun, Y. Zhong, C. Qian, and D. Yang, “In vivo targeting of breast cancer with a vasculature-specific GQDs/hMSN nanoplatform,” RSC Adv., vol. 9, 11576–11584, (2019).
[38]         M. B. and H. M. N. I. Ali reza, Tahir Rasheed, Faran Nabeel, Uzma Hayat, “Endogenous and Exogenous Stimuli-Responsive Drug Delivery Systems for Programmed Site-Specific Release,” molecules, 12,1–21, (2019).
[39]         S. Hossen, M. K. Hossain, M. K. Basher, M. N. H. Mia, M. T. Rahman, and M. J. Uddin, “Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies : A review,” J. Adv. Res., 15, 1–18, (2019).
[40]         S. Ghosh, K. Ghosal, S. A. Mohammad, and K. Sarkar, “Dendrimer functionalized carbon quantum dot for selective detection of breast cancer and gene therapy,” Chem. Eng. J., vol. 373, 468–484, (2019).
[41]         K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, and Z. Liu, “In Vitro and In Vivo Near-Infrared Photothermal Therapy of Cancer Using Polypyrrole Organic Nanoparticles,” 1–7, (2012).
[42]         S. M. Ardekani, A. Dehghani, M. Hassan, M. Kianinia, I. Aharonovich, and V. G. Gomes, “Two-photon excitation triggers combined chemo-photothermal therapy via doped carbon nanohybrid dots for effective breast cancer treatment,” Chem. Eng. J., 330, 651–662, (2017).
[43]         M. Rahmandoust and A. Öchsner, “Buckling behaviour and natural frequency of zigzag and armchair single-walled carbon nanotubes,” J. Nano Res., 16, 53–160, (2011).
[44]         I. Eslami Afrooz, A. Öchsner, and M. Rahmandoust, “Effects of the carbon nanotube distribution on the macroscopic stiffness of composite materials,” Comput. Mater. Sci., 51, 422–429, (2012).
[45]         M. Rahmandoust and A. Öchsner, “On Finite Element Modeling of Single- and Multi-Walled Carbon Nanotubes Delivered by Ingenta to : a single and,” Nanosci. Nanotechnol., 12, 8129–8136, (2017).
[46]         E. Wickstrom and B. Panchapakesan, “Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes,” Nanotechnology, 12, 2015-2020, (2007).
[47]         D. F. and R. K. J. Dennis E.J.G.J. Dolmanse, “Photodynamic therapy for cancer,” Nat. Rev. Cancer, 3, 375–380, (2003).
[48]         J. D. Monroe, E. Belekov, A. O. Er, and M. E. Smith, Anti-cancer photodynamic therapy properties of sulphur-doped graphene quantum dot and methylene blue preparations in MCF-7 breast cancer cell culture. (2019).