شماره 53-زمستان 1397
شماره 54- بهار 1398
فهرست

مروری بر نقش مهاجرت یونی در رفتارهای غیرمعمول سلول های خورشیدی پروسکایتی

نشریه: بهار 1399 - مقاله 7   صفحات :   تا 



مولفین:
فیروزه عبادی: دانشگاه صنعتی شریف - پژوهشکده نانو
راحله محمدپور: دانشگاه صنعتی شریف - پژوهشکده نانو
نیما تقوی نیا: دانشگاه صنعتی شریف - دانشکده فیزیک


چکیده مقاله:

در سالهای اخیر، سلولهای خورشیدی پروسکایتی به دلیل روش ساخت و تولید کم هزینه و همچنین رشد سریع بازدهی مورد توجه بسیاری از محققان در زمینه سلول‎های خورشیدی قرار گرفته است. بزرگترین چالشی که در مقابل تجاری شدن این سلول‎ها وجود دارد مسئله ی عدم پایداری مشخصه‎های مهم فوتولتائیکی آنها در شرایط واقعی می‎باشد. عوامل متعددی در تخریب این سلول‎ها با گذشت زمان و همچنین تحت شرایط مختلف گزارش شده است. با این حال یکی از مهمترین این عوامل، مهاجرت یونی در لایه‎ی فعال این سلول‎ها می‎باشد که با گذشت زمان منجر به تغییرات غیرعادی در کارکرد افزاره ها و مواد پروسکایتی می‎شود. در این مقاله ی مروری، ما به بررسی نقش مهاجرت یونی در بروز برخی رفتارهای غیرمعمول در سلولهای خورشیدی پروسکایتی می‎پردازیم.


Article's English abstract:

Showing a rapid increase in conversion efficiency and low-cost fabrication method, perovskite solar cells have attracted significant interest in the photovoltaic research field over the last decade. the main challenge for commercializing them is the instability of photovoltaic characteristics under real operational conditions. A variety of causes, for these instabilities, under different conditions and by the time have been reported. Ion migration in the perovskite layer is known as an important limiting-factor for long term stability. In this paper, we review some unusual behaviors in perovskite solar cells caused by ion migration.


کلید واژگان:
سلول‎های خورشیدی پروسکایت، مهاجرت یونی، هیستریزیس، تفکیک فازی

English Keywords:
Perovskite solar cells, Ion migration, hysteresis, Phase segregation

منابع:
منبع فارسی موجود نیست.

English References:
[1] “efficiency_chart.” [Online]. Available: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. [2] N. G. Park, “Perovskite solar cells: An emerging photovoltaic technology,” Mater. Today, vol. 18, no. 2, pp. 65–72, 2015. [3] G. Niu, X. Guo, and L. Wang, “Review of Recent Progress in Chemical Stability of Perovskite Solar Cells,” J. Mater. Chem. A, vol. 2, p. Advance, 2015. [4] Y. Yuan and J. Huang, “Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability,” Acc. Chem. Res., vol. 49, no. 2, pp. 286–293, 2016. [5] M. H. Futscher, J. M. Lee, T. Wang, A. Fakharuddin, L. Schmidt-Mende, and B. Ehrler, “Quantification of Ion Migration in CH3NH3PbI3 Perovskite Solar Cells by Transient Capacitance Measurements,” Jan. 2018. [6] B. Chen et al., “Impact of Capacitive Effect and Ion Migration on the Hysteretic Behavior of Perovskite Solar Cells,” J. Phys. Chem. Lett., vol. 6, no. 23, pp. 4693–4700, Dec. 2015. [7] Y. Zhao et al., “Correlations between Immobilizing Ions and Suppressing Hysteresis in Perovskite Solar Cells,” 2016. [8] P. Calado et al., “Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis,” Nat. Commun., vol. 7, no. 1, p. 13831, Dec. 2016. [9] E. L. Unger et al., “Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells,” Energy Environ. Sci., vol. 7, no. 11, pp. 3690–3698, 2014. [10] S. van Reenen, M. Kemerink, and H. J. Snaith, “Modeling Anomalous Hysteresis in Perovskite Solar Cells,” J. Phys. Chem. Lett., vol. 6, no. 19, pp. 3808–3814, Oct. 2015. [11] B. Rivkin, P. Fassl, Q. Sun, A. D. Taylor, Z. Chen, and Y. Vaynzof, “Effect of Ion Migration-Induced Electrode Degradation on the Operational Stability of Perovskite Solar Cells,” ACS Omega, vol. 3, no. 8, pp. 10042–10047, Aug. 2018. [12] Z. Ahmad et al., “Instability in CH3NH3PbI3 perovskite solar cells due to elemental migration and chemical composition changes,” Sci. Rep., vol. 7, no. 1, p. 15406, Dec. 2017. [13] M. Herman, M. Jankovec, and M. Topi?, “Optimal I-V curve scan time of solar cells and modules in light of irradiance level,” Int. J. Photoenergy, vol. 2012, 2012. [14] D. Albin and J. del Cueto, “Effect of hysteresis on measurements of thin-film cell performance,” Publ., Mar. 2011. [15] H. J. Snaith et al., “Anomalous Hysteresis in Perovskite Solar Cells,” no. iii, 2014. [16] M. Coll et al., “Polarization switching and light-enhanced piezoelectricity in lead halide perovskites,” J. Phys. Chem. Lett., vol. 6, no. 8, pp. 1408–1413, Apr. 2015. [17] W. Tress, “Metal Halide Perovskites as Mixed Electronic-Ionic Conductors: Challenges and Opportunities - From Hysteresis to Memristivity,” Journal of Physical Chemistry Letters, vol. 8, no. 13. American Chemical Society, pp. 3106–3114, 06-Jul-2017. [18] V. W. Bergmann et al., “Local Time-Dependent Charging in a Perovskite Solar Cell,” ACS Appl. Mater. Interfaces, vol. 8, no. 30, pp. 19402–19409, Aug. 2016. [19] W. Tress et al., “Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH 3 NH 3 PbI 3 perovskite solar cells: the role of a compensated electric field,” Energy Environ. Sci., vol. 8, no. 3, pp. 995–1004, 2015. [20] F. Ebadi, M. Aryanpour, R. Mohammadpour, and N. Taghavinia, “Coupled Ionic-Electronic Equivalent Circuit to Describe Asymmetric Rise and Decay of Photovoltage Profile in Perovskite Solar Cells,” Sci. Rep., vol. 9, no. 1, p. 11962, 2019. [21] A. Guerrero et al., “Properties of Contact and Bulk Impedances in Hybrid Lead Halide Perovskite Solar Cells Including Inductive Loop Elements,” J. Phys. Chem. C, vol. 120, no. 15, pp. 8023–8032, 2016. [22] K. Miyano, N. Tripathi, M. Yanagida, and Y. Shirai, “Lead Halide Perovskite Photovoltaic as a Model p-i-n Diode,” Acc. Chem. Res., vol. 49, no. 2, pp. 303–310, 2016. [23] J. Bisquert, G. Garcia-Belmonte, I. Mora-Sero, J. Bisquert, G. Garcia-Belmonte, and I. Mora-Sero, Chapter 3. Characterization of Capacitance, Transport and Recombination Parameters in Hybrid Perovskite and Organic Solar Cells, no. 16. 2016. [24] Z. Li, C. C. Mercado, M. Yang, E. Palay, and K. Zhu, “Electrochemical impedance analysis of perovskite-electrolyte interfaces,” Chem. Commun., 2017. [25] F. Ebadi, N. Taghavinia, R. Mohammadpour, A. Hagfeldt, and W. Tress, “Origin of apparent light-enhanced and negative capacitance in perovskite solar cells,” Nat. Commun. 2019 101, vol. 10, no. 1, p. 1574, Apr. 2019. [26] I. Mora-Ser? et al., “Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells,” Nano Lett., vol. 6, no. 4, pp. 640–650, Apr. 2006. [27] A. Kovalenko, J. Pospisil, O. Zmeskal, J. Krajcovic, and M. Weiter, “Ionic origin of a negative capacitance in lead halide perovskites,” Phys. status solidi - Rapid Res. Lett., vol. 11, no. 3, p. 1600418, Mar. 2017. [28] A. Guerrero et al., “Properties of Contact and Bulk Impedances in Hybrid Lead Halide Perovskite Solar Cells Including Inductive Loop Elements,” J. Phys. Chem. C, vol. 120, no. 15, pp. 8023–8032, 2016. [29] Z. Tang and T. Minemoto, “Experimental demonstration of ions induced electric field in perovskite solar cells,” Aug. 2015. [30] Y. Feng et al., “Interfacial negative capacitance in planar perovskite solar cells: an interpretation based on band theory,” Mater. Res. Bull., Jul. 2018. [31] F. Fabregat-Santiago et al., “Deleterious Effect of Negative Capacitance on the Performance of Halide Perovskite Solar Cells,” vol. 2, 2017. [32] W. Rehman et al., “Photovoltaic mixed-cation lead mixed-halide perovskites: Links between crystallinity, photo-stability and electronic properties,” Energy Environ. Sci., vol. 10, pp. 361–369, 2016. [33] F. Brivio, C. Caetano, and A. Walsh, “Thermodynamic Origin of Photoinstability in the CH 3 NH 3 Pb(I 1?x Br x ) 3 Hybrid Halide Perovskite Alloy,” J. Phys. Chem. Lett, vol. 7, pp. 1083–1087, 2016. [34] M. C. Brennan, S. Draguta, P. V Kamat, and M. Kuno, “Light-Induced Anion Phase Segregation in Mixed Halide Perovskites,” Cite This ACS Energy Lett, vol. 3, pp. 204–213, 2018. [35] S. J. Yoon et al., “Tracking Iodide and Bromide Ion Segregation in Mixed Halide Lead Perovskites during Photoirradiation,” ACS Energy Lett., vol. 1, no. 1, pp. 290–296, 2016. [36] S. Joon Yoon, M. Kuno, and P. V Kamat, “Shif t Happens. How Halide Ion Defects Influence Photoinduced Segregation in Mixed Halide Perovskites,” 2017.



فایل مقاله
تعداد بازدید: 235
تعداد دریافت فایل مقاله : 10



طراحی پرتال|طراحی پورتالطراحی پرتال (طراحی پورتال): آرانا نتورک