شماره 53-زمستان 1397
شماره 54- بهار 1398
فهرست

معرفی نانوحباب¬ها، خواص و کاربرد آنها

نشریه: شماره 55- تابستان 1398 - مقاله 7   صفحات :   تا 



مولفین:
مرضیه جان نثاری: sharif university of technology - پژوهشکده نانو
امید اخوان: دانشگاه شریف - دانشکده فیزیک
حمیدرضا مداح حسینی: دانشگاه شریف - دانشکده مهندسی مواد


چکیده مقاله:

فضاهای خالی نانومتری پرشده از گاز در توده¬ی یک مایع و یا در فصل مشترک جامد–مایع به ترتیب نانوحباب¬های توده و سطحی نامیده می¬شوند. هرچند، وجود نانوحباب¬ها تا سالها در هاله¬ای از ابهام قرار داشت، خوشبختانه با ظهور تکنیک¬های تصویربرداری در مقیاس نانومتری امکان اثبات این حفرات نانومتری فراهم شد. نانوحباب¬ها بواسطه¬ی بروز خواص ویژه و منحصر بفردی مانند پایداری بیش از انتظار، دارا بودن بار سطحی منفی و ایجاد گونه¬های فعال اکسیژن، در سال¬های اخیر توجه بسیار زیادی را در زمینه¬های مختلف مانند صنعت آب کشاورزی و پزشکی به خود معطوف کرده¬اند. سه روش عمده تولید نانوحباب¬ها شامل تشکیل خودبخودی، تولید از طریق فوق اشباعی گاز و در نهایت ایجاد اختلالات در مایع می¬باشد. این مقاله، بطور خلاصه به تعریف و طبقه بندی انواع نانوحباب¬ها، خواص آنها از جمله تئوری¬ها و شواهد موافق و مخالف پایداری نانوحباب¬ها و در نهایت روش¬های تولید و کاربردهای مهم صنعتی آنها می¬پردازد.


Article's English abstract:

Nano-scale gas filled cavities, suspended in the bulk of a solution or located on a liquid/solid interface have been known as bulk and surface nanobubbles NBs, respectively. The existence of NBs was argued by the researcher for a long time. However, with the advent of different microscopic techniques, capable for detecting nanoscale features the nanoscale-gas filled cavities were confirmed. Recently, NBs exhibiting outstanding and unique properties such as extraordinary stability, possessing negative surface charges and reactive oxygen species ROS generation draw a great deal of attention in different fields such as water industry, agriculture and biomedicine. In general, there are three main techniques to produce NBs including spontaneous generation, gas supersaturation and finally induced-shaking and pressure fluctuations in liquids. This review paper, introduces a brief deion and classification of NBs, a discussion on main properties of NBs such as giving evidence for and against different aspects and theories of long stability and ultimately, the main generation techniques and industrial applications.


کلید واژگان:
نانوحباب¬ها، تاریخچه¬ی نانوحباب¬ها،خصوصیات نانوحباب¬ها، تصفیه¬ی آب و پساب، کشاورزی

English Keywords:
nanobubbles, history of nanobubbles, nanobubbles properties, water and waste water treatment, agriculture

منابع:

English References:
[1] Agarwal A., Ng WJ., Liu Y., Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere, 84 (2011) 1175–80. [2] Wu C, Nesset K., Masliyah J., Zu Z., Generation and characterization of submicron size bubbles. Adv Colloid Interface Sci 179–182(2012) 123–32. [3] Shu L, Wang Q., Ma H., Huang P., Li J., Kikuchi T., E?ect of micro-bubbles on coagulation ?otation process of dyeing wastewater. Sep. Purif. Technol.71 (2010) 337–46. [4] Takahashi M., Chiba K., Li P., Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. J Phys Chem B 111(6) (2007) 1343–7. [5] Terasaka K., Hirabayashi A., NishinoT., Fujioka S., Kobayashi D., Development of microbubble aerator for waste water treatment using aerobic activated sludge, Chem Eng Sci 66(14) (2011) 3172–9. [6] Seddon J R., Lohse D., Nanobubbles and micropancakes: gaseous domains on immersed substrates J. Phys.: Condens. Matter 23 (2011) 133001 (22pp). [7] Alheshibri M., Qian J., Jehannin M., Criag V.S.J., A history of nanobubbles, Langmuir 32 (2016) 11086–11100. [8] Zhang H. X., Ziaodong Z., Sun J., Zhang Z., Li G., F.ang H., Xiao X., Zeng X., Hu J., Detection of novel gaseous states at the highly oriented pyrolytic graphite–water interface Langmuir 23 (2007) 1778–83. [9] Sette, D.; Wanderling, F. Nucleation by cosmic rays in ultrasonic cavitation. Phys. Rev. 1962, 125 (2), 409?417. [10] Hemmingsen, E. A. Cavitation in gas-supersaturated solutions. J. Appl. Phys. 1975, 46 (1), 213?218. [11] Johnson, B. D.; Cooke, R. C. Generation of stabilized microbubbles in seawater. Science 213 (4504) (1981) 209?211. [12] Craig, V. S. J.; Ninham, B. W.; Pashley, R. M. The Effect of Electrolytes on Bubble Coalescence in Water. J. Phys. Chem. 1993, 97 (39), 10192?10197. [13] Degens E. T., von Herzen R. P., Wong H. K., Deuser, W. G., Jannasch, H. W., Lake Kivu: Structure, chemistry and biology of an East African Rift Lake. Geol. Rundsch, 62 (1973) 245?277. [14] Bunkin N.F., Bunkin F.V., Bubstons are stable gas microbubbles in highly diluted solutions of electrolytes. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki 101 (1992) 512?527. [15] Parker J.L. Claesson P.M. P. Attard, Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces, J. Phys. Chem. 98 (34) (1994) 8468e8480. [16] Hampton MA., Nguyen AV., Nanobubbles and the nanobubble bridging capillary force. Adv Colloid Interface Sci. 154 (2010) 30-55. [17] Miller J D., Hu Y., Veeramasuneni S., Lu Y., In situ detection of butane gas at a hydrophobic silicon surface Colloids Surf. A 154 (1999) 137–47. [18] Ishida N., Inoue T, Miyahara M., Higashitani K., Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic forcemicroscopy. Langmuir 16(16) (2000) 6377–80. [19] Lou S.T., Ouyang Z. Q., Zhang Y., Nanobubbles on solid surface imaged by atomic force microscopy. J Vac Sci Technol B 18(5) (2000) 2573–5. [20] Demangeat J. L., Gas nanobubbles and aqueous nanostructures: the crucial role of dynamization, Homeopathy 104 (2015) 101-115. [21] Ohgaki K., Khanh NQ., Joden Y., Tsuji A., Nakagawa T., Physicochemical approach to nanobubble solutions. Chem Eng Sci 65(3) (2010;)1296–300. [22] Temesgen T., Bui T. T., Han M., Kim, T. IL., Park H., Micro and Nanobubble Technologies as a New Horizon for Water Treatment Techniques: A Review. Adv. Colloid Interface Sci., 246 92017) 40?51. [23] Agarwal A., Jern Ng W., Liu Y., Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 84 (2011)1175-1180. [24] Liu S., Kawagoe Y., Makino Y., Oshita S., Effects of nanobubbles on the physicochemical properties of water: the basis for peculiar properties of water containing nanobubbles. Chem Eng Sci. 93 (2013) 250-256. [25] Bunkin N.F., Shkirin A.V., Suyazov N.V., Babenko V.A., Sychev A.A., Penkov N.V., et al., formation and dynamics of ion stabilized gas nanobubble phase in the bulk of aqueous NaCl solutions, J. Phys. Chem. B 120 (2016) 1291-1303. [26] Ohgaki K., Khanh NQ., Joden Y., Tsuji A., Nakagawa T., Physicochemical approach to nanobubble solutions. Chem Eng Sci. 65(3) (2010) 1296–300. [27] Weijs J. H., Seddon J.R.T., Lohse D., Diffusive Shielding Stabilizes Bulk Nanobubble Clusters, ChemPhysChem, 13 (2012) 2197 – 2204. [28] Zangi R., Water con?ned to a slab geometry: a review of recent computer simulation studies J. Phys.: Condens.Matter 16 (2004) 5371–88 [29] Kolivo V., Miroslav S., Bovine serum albumin ?lm as a template for controlled nanopancake and nanobubble formation: In situ atomic force microscopy and nanolithography study, Colloids and Surfaces B:Biointerfaces, 91 (2012) 213–219. [30] Kikuchi K., Ioka A., Oku T., Tanaka, Y., Saihara Y., Ogumi, Z., Concentration Determination of Oxygen Nanobubbles in Electrolyzed Water. J. Colloid Interface Sci. 329 (2009) 306?309. [31] Kikuchi K, Nagata S., Tanaka Y., Salhara Y., Ogumi Z., Characteristics of hydrogen nanobubbles in solutions obtained with water electrolysis. J. Electroanal. Chem., 600 (2007) 303?310. [32] Kikuchi K., Takeda H., Rabolt B., Okaya T., Ogumi Z., Saihara Y., Noguchi H., Hydrogen Particles and Supersaturation in Alkaline Water From an Alkali-Ion-Water Electrolyzer. J. Electroanal. Chem., 506 (2001) 22?27. [33] Dube N. K., Oeffinger B. E., Wheatley M. A., Development and characterization of a nano-sized surfactant stabilized contrast agent for diagnostic ultrasound, (2003)102?103. [34] Calgaroto S., Wilberg K.Q., Rubio J., On the nanobubbles interfacial properties and future applications in ?otation, Miner. Eng. 60 (2014) 33-40. [35] Jannesari M., Akhavan O., Madaah Hosseini HR., Graphene oxide in generation of nanobubbles using controllable microvortices of jet ?ows, Carbon, 138 (2018) 8-17. [36] Liu S., Oshita, S., MakinoY., Wang Q., Kawagoe Y., Uchida T., Oxidative capacity of nanobubbles and its effect on seed germination, ACS Sustainable Chemistry



فایل مقاله
تعداد بازدید: 204
تعداد دریافت فایل مقاله : 23



طراحی پرتال|طراحی پورتالطراحی پرتال (طراحی پورتال): آرانا نتورک