شماره 46 - بهار 1396
ICNS7
شماره 47-تابستان 1396
شماره 48-پاییز 1396
شماره 49-زمستان 1396
فهرست

اثرات نانوذرات بر ریزجانداران خاکزی

نشریه: شماره 47-تابستان 1396 - مقاله 8   صفحات :  44 تا 52



کد مقاله:
47-08

مولفین:
معصومه مهدی زاده: دانشگاه تبریز -
نصرت الله نجفی: دانشگاه تبریز - دانشکده کشاورزی


چکیده مقاله:

نانوذرات به‌عنوان پایه و اساس فناوری نانو در زمینه کشاورزی به‌ویژه علوم خاک سهم به‌سزایی داشته است. نانوذرات به‌خاطر ویژگی‌های خاصشان، به‌طور گسترده در محصولات استفاده می‌شوند اما شواهد کافی وجود دارد که آن‌ها اثرهای سمی بر ریزجانداران خاکزی میشوند. جذب سلولی این ذرات ممکن است، با تولید گونه‌های فعال اکسیژن باعث ایجاد سمیت سلولی شود، به این دلیل ارزیابی خطرات زیستمحیطی نانوذرات در طول چرخه عمر نانوذرات امری لازم و ضروری میباشد. مطالعه برهمکنش بین نانوذرات و محیط خاک برای درک برهمکنش‌های موجود بسیار حائز اهمیت است. مطالعات اخیر موجود در ارتباط با منابع ورود نانوذرات فلزی در خاک و واکنشپذیری نانوذرات و اثر سمیت نانوذرات مهندسی شده بر ریزجانداران خاکزی در این بررسی بیان شده است. لازم به ذکر است با توجه به اینکه در مطالعه تأثیرات سمیت نانوذرات بر ریزجانداران خاکزی جنبه‌های مختلفی بررسی شده است. برقراری یک ارتباط بین مطالعات موجود بسیار دشوار است.


Article's English abstract:

Nanoparticles, as the basis of nanotechnology in agriculture field, especially soil science, have an important contribution. Nanoparticles are widely used in products because of their specific characteristics, but there is sufficient evidence that they have toxic effects on soil microorganisms. Cellular uptake of these particles may be produced reactive oxygen species induced cell toxicity, For this reason, the environmental risk assessment of nanoparticles during the life cycle of nanoparticles is necessary. The study of interaction between nanoparticles and soil environment is very important for understanding the available interactions. Recent studies in relation to input sources of metal nanoparticles in soil and nanoparticle reactivity and toxicity effect of engineered nanoparticles on soil microorganisms are expressed in this study. It is noteworthy that, in the study of the toxicity of nanoparticles on soil microorganisms, different aspects are studied. Establishing a communication between different studies is difficult.


کلید واژگان:
نانو، سمیت، نانوذرات، ریزجانداران خاکزی

English Keywords:
Nanoparticles, Nanotechnology, Soil microorganisms, Toxicity

منابع:

English References:
1. National Nanotechnology Initiative (NNI). What is Nanotechnology? 2008. 2. R, Handy; F, von der Kammer; J, Lead; M, Hassellov; R, Owen; M, Crane; The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314, 2008. 3. F, Gottschalk; B, Nowack; The release of engineered nanomaterials to the environment. J. Environ. Monit 13:1145–1155, 2011. 4. T, Scown; R, van Aerle; C, Tyler; Review: Do engineered nanoparticles pose a significant threat to the aquatic environment. Crit. Rev. Toxicol 40: 653–670, 2010. 5. KL, Garner; AA, Keller; Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies. J Nanopart Res 16: 1-28, 2014. 6. JT, Quik; JA, Vonk ; SF, Hansen; How to assess exposure of aquatic organisms to manufactured nanoparticles? Environ Int 37: 1068-77, 2011. 7. AA, Keller; A, Lazareva; Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1: 65-70, 2013. 8. P, Tourinho; C, van Gestel; S, Lofts; C, Svendsen; M, Soares; S, Loureiro; Metal-based nanoparticles in soil: Fate, behavior and effects on soil invertebrates. Environ. Toxicol. Chem. 31:1679–1692, 2012. 9. International Organization for Standardization. Soil quality: Requirements and guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials. ISO17402, 2011. 10. M, Bakshi; H, Singh; P, Abhilash; The unseen impact of nanoparticles: More or less. Curr Sci 106: 350-2, 2014. 11. TM, Benn; P, Westerhoff; Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science and Technology 42:4133–4139, 2008. 12. R, Kaegi; B, Sinnet; S, Zuleeg; H, Hagendorfer; E, Mueller; R, Vonbank; M, Boller ; M, Burkhardt; Release of silver nanoparticles from outdoor facades. Environmental Pollution 158:2900–2905, 2010. 13. W, Cui; W, Lu; Y, Zhang; G, Lin; T, Wei ; L, Jiang; Gold nanoparticle ink suitable for electric-conductive pattern fabrication using in ink-jet printing technology. Colloids and Surfaces A: Physicochemical and Engineering Aspects 358: 35–41, 2010. 14. RJ, Barnes; O, Riba; MN, Gardner; TB, Scott; SA, Jackman; IP, Thompson; Optimization of nano-scale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions. Chemosphere 79:448–454, 2010. 15. NC, Mueller;B, Nowack; Exposure modeling of engineered nanoparticles in the environment. Environmental Science and Technology 42:4447–4453, 2008. 16. MA, Kiser; DA, Ladner; KD, Hristovski ; PK, Westerhoff; Nanomaterial transformation and association with fresh and freeze-dried wastewater activated sludge: Implications for testing protocol and environmental fate. Environmental Science and Technology 46:7046-7053, 2012. 17. EZ, Harrison; SR, Oakes; M, Hysell; A, Hay; Organic chemicals in sewage sludges. Science of the Total Environment 367:481-497, 2006. 18. DL, Pritchard; N, Penney; MJ, Mclaughlin; H, Rigby; K, Schwarz; Land application of sewage sludge (biosolids) in Australia: risks to the environment and food crops. Water Science and Technology 62:48-57, 2010. 19. GD, Panagiotou; T, Petsi; K, Bourikas; CS, Garoufalis; A, Tsevis; N, Spanos; C, Kordulis ; A, Lycourghiotis; Mapping the surface (hydr) oxo-groups of titanium oxide and its interface with an aqueous solution: The state of the art and a new approach. Advances in Colloid and Interface Science 142:20-42, 2008. 20. T, Hiemstra; J, Antelo; R, Rahnemaie; WH, Vanriemsdijk; Nanoparticles in natural systems I: The effective reactive surface area of the natural oxide fraction in field samples. Geochimica Et Cosmochimica Acta 74:41-58, 2010. 21. JQ, Zhang; YH, Dong; Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China. Journal of Hazardous Materials 151:833-839, 2008. 22. MB, Mcbride; Environmental Chemistry of Soils, New York, Oxford University Press, 1994. 23. AA, Keller; HT, Wang; DX, Zhou; HS, Lenihan; G, Cherr; BJ, Cardinale; R, Miller; ZX, JI; Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environmental Science and Technology 44:1962-1967, 2010. 24. JT, Lv; SZ, Zhang; L, Luo; W, Han; J, Zhang; K, Yang; P, Christie; Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. Environmental Science and Technology 46:7215-7221, 2012. 25. GE, Batley; MJ, McLaughlin; Fate of manufactured nanomaterials in the Australian environment, National Research Flagships, CSIRO, Adelaide pp: 86, 2008. 26. F, Gottschalk ; T, Sonderer; RW, Scholz; B, Nowack; Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environmental Science and Technology 43: 9216–9222, 2009. 27. CL, Doolette; MJ, McLaughlin; JK, Kirby; DJ, Batstone; HH, Harri; H, Ge; Cornelis, Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities. Chemistry Central Journal 7: 46–64, 2013. 28. W, Lee; JI, Kwak; YJ, An; Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity, Chemosphere 86:491–499, 2012. 29. G, Cornelis; K, Hund-Rinke; T, Kuhlbusch; N, Van den Brink; C, Nickel; Fate and bioavailability of engineered nanoparticles in soils: a review, Critical Reviews in Environmental Science and Technology 44:2720–2764, 2014. 30. MP, Hirsch; Availability of sludge-borne silver to agricultural crops. Environmental Toxicology and Chemistry 17:610–616, 1998. 31. WJ, Stark; Nanoparticles in biological systems. Angew Chem Int Ed Engl 50: 1242-58, 2011. 32. ZJ, Deng; M, Liang; I, Toth; Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Nanotoxicology 7: 314-22, 2012. 33. A, Nel; T, Xia; L, Mädler; Toxic potential of materials at the nanolevel. Science 311: 622-7, 2006. 34. AK, Suresh; DA, Pelletier; MJ, Doktycz; Relating nanomaterial properties and microbial toxicity. Nanoscale 5: 463-474, 2013. 35. SJ, Klaine; PJ, Alvarez; GE, Batley; TF, Fernandes; RD, Handy; DY, Lyon; JR, Lead; Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry 27: 1825- 1851, 2008. 36. MJ, Hajipour; KM, Fromm; A, AkbarAshkarran; D, Jimenez de Aberasturi; IR, Larramendi; T, Rojo; M, Mahmoudi; Antibacterial properties of nanoparticles. Trends in Biotechnology, 2012. 37. A, Azam; AS, Ahmed; M, Oves; MS, Khan; SS, Habib; A, Memic; Antimicrobial activity of metal oxide nanoparticles against gram-positive and gramnegative bacteria: A comparative study. International Journal of Nanomedicine 7: 6003, 2012. 38. DA, Pelletier; AK, Suresh; GA, Holton; CK, McKeown; W, Wang; B, Gu; MR, Allison; Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Applied and Environmental Microbiology 76: 7981-7989, 2010. 39. M, Li; L, Zhu; D, Lin; Toxicity of ZnO nanoparticles to escherichia coli: Mechanism and the influence of medium components. Environmental Science and Technology 45: 1977-1983, 2011. 40. A, Thill; O, Zeyons; O, Spalla; F, Chauvat ; J, Rose; M, Auffan; AM, Flank; Cytotoxicity of CeO2 nanoparticles for escherichia coli. physicochemical insight of the cytotoxicity mechanism. Environmental Science and Technology 40: 6151-6156, 2006. 41. JT, Seil; TJ, Webster; Antimicrobial applications of nanotechnology: Methods and literature. International Journal of Nanomedicine 7: 2767, 2012. 42. SJ, Soenen; P, Rivera-Gil; J, Montenegro ; WI, Parak; SC, De Smedt; K, Braeckmans; Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6: 446-465, 2011. 43. A, Pramanik; D, Laha; D, Bhattacharya; P, Pramanik; P, Karmakar; A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids and Surfaces B: Biointerfaces 96:50-55, 2012. 44. AA, Tayel; WF, EL?tras; S, Moussa; AF, EL?baz; H, Mahrous; MF, Salem; L, Brimer; Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. Journal of Food Safety 31: 211-218, 2011. 45. Y, Cui; Y, Zhao; Y, Tian; W, Zhang; X, Lü; X, Jiang; The molecular mechanism of action of bactericidal gold nanoparticles on< i> escherichia coli. Biomaterials 33: 2327-2333, 2012. 46. T, Mashino; K, Okuda; T, Hirota; M, Hirobe; T, Nagano; M, Mochizuki; Inhibition of E. coli growth by fullerene derivatives and inhibition mechanism. Bioorganic and Medicinal Chemistry Letters 9: 2959-2962, 1999. 47. I, Sondi; B, Salopek-Sondi; Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science. 275:177-182, 2004. 48. E, Cabiscol; J, Tamarit; J, Ros; Oxidative stress in bacteria and protein damage by reactive oxygen species. International Microbiology 1: 3-8, 2010. 49. JL, Gardea-Torresdey; CM, Rico; JC, White; Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environmental Science and Technology 48:2526-2540, 2014. 50. K, Midander; P, Cronholm; HL, Karlsson ; K, Elihn; L, Moller; C, Leygraf; IO, Wallinder ; Surface characteristics, copper release, and toxicity of nano- and micrometersized copper and copper (II) oxide particles: a cross-disciplinary study. Small 5:389–399, 2009. 51. V, Stone; B, Nowack; A, Baun; N, van den Brink; F, von der Kammer; M, Dusinska; R, Handy; S, Hankin; M, Hassellov; E, Joner; TF, Fernandes; Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Science of the Total Environment 408:1745–1754, 2010. 52. LK, Adams; DK, Lyon; PJ, Alvarez; Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions.Water Research 40: 3527–3532, 2006. 53. Y, Ge; JP, Schimel; PA, Holden; Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environmental Science and Technology 45:1659-64, 2011. 54. M, Auffan; J, Rose; MR, Wiesner; JY, Bottero; Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–1133, 2009. 55. N, Franklin; N, Rogers; S, Apte, G, Batley; G, Gadd; P, Casey P; Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalgae (Pseudokirchneriella subcapitata): the importance of particle solubility. Environmental Science and Technology 41:8484-8490, 2007. 56. SIL, Gomes; SC, Novais; JJ, Scott-Fordsmand; W, De Coen; Am, Soares; MJ, Amorim, Effect of Cu-nanoparticles versus Cu-salt in Enchytraeus albidus (Oligochaeta): Differential gene expression through microarray analysis. Comp Biochem Physiology Part C: Toxicology Pharmacology 155:219–227, 2012. 57. R, Nair; SH, Varghese; BG, Nair; T, Maekawa; Y, Yoshida; DS, Kumar; Nanoparticulate material delivery to plants. Plant Sci. 179, 154–163, 2010. 58. LH, Heckmann; M, Hovgaard; D, Sutherland; H, Autrup; F, Besenbacher; J, Scott-Fordsmand; Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology 20:226–233, 2011. 59. WA, Shoults-Wilson; BC, Reinsch; OV, Tsyusko; PM, Bertsch; GV, Lowry; JM, Unrine ; Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology 5:432–444, 2010. 60. JY, Bottero; M, Auffan; J, Rose; C, Mouneyrac; C, Botta; J, Labille; A, Masion; A, Thill; C, Chaneac; Manufactured metal and metal-oxide nanoparticles: Properties and perturbing mechanisms of their biological activity in ecosystems. Comptes Rendus Geoscience 343: 168-176, 2011. 61. RA, French; AR, Jacobson; B, Kim; SL, Isley; RL, Penn; PC, Baveye; Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environmental Science and Technology 43:1354–1359, 2009. 62. J, Unrine; P, Bertsch; S, Hunyadi; Bioavailability, Trophic Transfer, and Toxicity of Manufactured Metal and Metal Oxide Nanoparticles in Terrestrial Environments. John Wiley & Sons, New York, USA, 2008. 63. O, Choi; Z, Hu; Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science and Technology 42:4583–4588, 2008. 64. D, Lim; JY, Roh; HJ, Eom; J, Choi; J, Hyun; J, Choi; Oxidative stress related PMK-1 P38 MAPK activation as a mechanism of toxicity of silver nanoparticles on the reproduction of the nematode Caenohabditis elegans. Environmental Toxicology and Chemistry 3: 585-592, 2012. 65. W, Shoults-Wilson; O, Zhurbich; D, McNear; O, Tsyusko; P, Bertsch; J, Unrine; Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida). Ecotoxicology 20:385–396, 2011. 66. C, Peyrot; KJ, Wilkinson; M, Desrosiers; Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environ Toxicol Chem 33: 115-25, 2014. 67. MJ, vander Ploeg; RD, Handy; PL, Waalewijn?Kool; Effects of silver nanoparticles (NM?300K) on Lumbricus rubellus earthworms and particle characterization in relevant test matrices including soil. Environ Toxicol Chem 33: 743-52, 2014. 68. C, García-Gomez; M, Babin; A, Obrador ; Toxicity of ZnO Nanoparticles, ZnO Bulk, and ZnCl2 on Earthworms in a Spiked Natural Soil and Toxicological Effects of Leachates on Aquatic Organisms. Arch Environ Contam Toxicol 67: 465-73, 2014. 69. N, Adam; C, Schmitt; J, Galceran; The chronic toxicity of ZnO nanoparticles and ZnCl2 to Daphnia magna and the use of different methods to assess nanoparticle aggregation and dissolution. Nanotoxicology 8: 709-17, 2014. 70. JT, Dahle; Y, Arai; Effects of Ce (III) and CeO2 nanoparticles on soil-denitrification kinetics. Arch Environ Contam Toxicol 67: 474-82, 2014. 71. E, Lahive; K, Jurkschat; BJ, Shaw; Toxicity of cerium oxide nanoparticles to the earthworm Eisenia fetida: subtle effects. Environ Chem 11: 268-78, 2014. 72. K, Donaldson; CA, Poland; RP, Schins; Possible genotoxic mechanisms of nanoparticles: Criteria for improved test strategies. Nanotoxicology 4:414-420, 2010. 73. M, Tal Ben; F, Sammy; D, Ishai; M, Dror ; B, Brian; Effects of metal oxide nanoparticles on soil properties. Journal Chemosphere. 90:640-646, 2013. 74. AL, Neal; N, Kabengi; A, Grider; PM, Bertsch; Can the soil bacterium Cupriavidus necator sense ZnO nanomaterials and aqueous Zn2+ differentially? Nanotoxicology 6:371-380, 2012. 75. LJ, Zhao; JR, Peralta-videa; A, Varela-ramirez; H, Castillo-michel; CQ, LI; JY, Zhang; RJ, Aguilera; AA, Keller; JL, Gardea-torresdey; Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: Insight into the uptake mechanism. Journal of Hazardous Materials 225:131-138, 2012. 76. I, Chowdhury; DM, Cwiertny; SL, Walker; Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria. Environmental Science and Technology 46:6968-6976, 2012. 77. C, Gunawan; WY, Teoh; CP, Marquis; R, AMAL; Cytotoxic origin of copper (II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano 5: 7214-7225, 2011. 78. NB, Hartmann; S, Legros; F, Vonderkammer; T, Hofmann; A, Baun; The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna. Aquatic Toxicology, 118: 1-8, 2012. 79. V, Peralta; JR, Zhao; L, Lopez-moreno; ML, Delarosa; G, Hong; JL, Gardea-torresdey; Nanomaterials and the environment: A review for the biennium. Journal of Hazardous Materials 186:1-15, 2011. 80. HL, Hooper; K, Jurkschat; AJ, Morgan; J, Bailey; AJ, Lawlor; DJ, Spurgeon; C, Svendsen; Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix. Environment International 37:1111–1117, 2011. 81. H, McShane; M, Sarrazin; JK, Whalen ; WH, Hendershot; GI, Sunahara; Reproductive and behavioral responses of earthworms exposed to nano-sized titanium dioxide in soil. Environmental Toxicology and Chemistry 31:184–193, 2012. 82. HE, Canas; B, Qi; S, Li; JD, Maul; SB, Cox; S, Das; MJ, Green; Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO2) to earthworms (Eisenia fetida). Journal of Environmental Monitoring 13:3351–3357, 2011. 83. SW, Kim; SH, Nam; YJ, An; Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans. Ecotoxicol Environ Safety 77:64–70, 2012.



فایل مقاله
تعداد بازدید: 331
تعداد دریافت فایل مقاله : 12



طراحی پرتال|طراحی پورتالطراحی پرتال (طراحی پورتال): آرانا نتورک