شماره 50-بهار 1397
ICNN2018
فهرست

نانوکامپوزیت¬ها و عوامل مؤثر بر هدایت حرارتی آن¬ها

نشریه: شماره 47-تابستان 1396 - مقاله 2   صفحات :  10 تا 16



کد مقاله:
47-02

مولفین:
مهدی صالحی راد: پژوهشگاه نیرو -
لیلا احمدیان علم: پژوهشگاه نیرو - پژوهشگاه نیرو
مریم کردانی: پژوهشگاه نیرو - پژوهشگاه نیرو


چکیده مقاله:

کامپوزیت¬های پلیمری مختلفی که جهت تهیه بردهای مدار چاپی، مواد بین سطحی حرارتی و نیز به عنوان پایه یا نگهدارنده تجهیزات الکترونیکی مورد استفاده قرار می¬گیرند، توانایی انتقال حرارت بسیار پایینی دارند. از این¬رو عامل فوق کاربرد این دسته از مواد در زمینه¬های یاد شده را محدود نموده است. یکی از روش¬های مورد توجه جهت تقویت خواص هدایت حرارتی پلیمرها، استفاده از پرکننده¬های در مقیاس نانو است. عواملی نظیر اندازه، شکل، جهت¬گیری و برهم¬کنش پرکننده نانو با ماتریس پلیمر در میزان تأثیرگذاری پرکننده¬ها بر خواص پلیمر نقش به سزایی دارند. این مقاله به معرفی این عوامل و بررسی چگونگی تأثیر آن¬ها بر رفتار هدایت حرارتی کامپوزیت ها پرداخته است.


Article's English abstract:

In recent years, nanocomposites have great application potential in microelectronics as thermal interface materials TIMs. But, these materials have low heat-transfer capability. Therefore, this factor has limited the use of polymer material in microelectronics applications. Nanofiller materials used to modify polymeric materials in order to improve their heat transfer properties. Several factors such as interaction between nanofillers and polymer matrix, size, shape and alignment of nanofillers influence various properties of polymeric composites. This paper introduces these factors and explains the effects of these factors on the thermal conductivity of composites.


کلید واژگان:
نانوكامپوريت ، پرکننده، هدايت حرارتي.

English Keywords:
Nanocomposite, Filler, Thermal conductivity.

منابع:

English References:
1. C, T’Joen; Y, Park; Q, Wang; A, Sommers; X, Han; A, Jacobi; A review on polymer heat exchangers for HVAC&R. international journal of refrigeration 32: 763–779, 2009. 2. G, Junwei; L, Nan; T, Lidong; L, Zhaoyuan; Zh, Qiuyu; High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites. RSC Advances 5: 36334-36339, 2015. 3. M, Thompson Pettes; H, Ji; RS, Ruoff; L, Shi; Thermal Transport in Three-Dimensional Foam Architectures of Few-Layer Graphene and Ultrathin Graphite. Nano Letter 12: 2959–2964, 2012. 4. WL, Song; P, Wang; L, Cao; A, Anderson; MJ, Meziani; AJ, Farr; YP, Sun; Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angewandte Chemie International Edition 51: 6498-6501, 2012. 5. Z, Hongli; L, Yuanyuan; F, Zhiqiang; X, Jiajun; C, Fangyu; W, Jiayu; P, Colin; Y, Bao; H, Liangbing; Highly Thermally Conductive Papers with Percolative Layered Boron Nitride Nanosheets. ACS Nano 8: 3606-3613, 2014. 6. M, Martin-Gallego; R, Verdejo; M, Khayet; J, Maria Ortiz de Zarate; M, Essalhi; M, Angel Lopez-Manchado; Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites. Nanoscale Research Letters 6: 610-616, 2011. 7. AM, Marconnett; N, Yamamoto; MA, Panzer; BL, Wardle; KE, Goodson; Thermal Conduction in Aligned Carbon Nanotube-Polymer Nanocomposites with High Packing Density. ACS Nano 5: 4818-4825, 2011. 8. X, Huang; P, Jiang; L, Xie; Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity. Applied Physics Letters 95: 242-901, 2009. 9. AM, Abyzov; SV, Kidalov; FM, Shakhov; High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix. Journal of Materials Science 46: 1424- 1438, 2011. 10. HB, Cho; M, Mitsuhashi; T, Nakayama; S, Tanaka; T, Suzuki; H, Suematsu; W, Jiang; Y, Tokoi; SW, Lee; YH, Park; K, Niihara; Thermal anisotropy of epoxy resin-based nano-hybrid films containing BN nanosheets under a rotating superconducting magnetic field. Materials Chemistry and Physics 139: 355-359, 2013. 11. WJ, Cantwell; J, Morton; The impact resistance of composite materials-A review. Composites 22: 347-362, 1991. 12. JJ, Taha-Tijerina; Multifunctional nanofluids with 2D nanosheets for thermal management and tribological applications. PhD Thesis, Rice University, Houston, Texas, October 2013. 13. Z, Han; JW, Wood; H, Herman; C, Zhang; GC Stevens; Thermal properties of composites filled with different fillers, IEEE International Symposium on Electrical Insulation, 2008, 497-501. 14. R, Kochetov; Thermal and electrical properties of nanocomposites, including material processing. M.Sc thesis, Saint-Petersburg State Electrotechnical University ‘LETI’, Russia, 2012. 15. IA, Tsekmes; R, Kochetov; PHF, Morshuis; JJ, Smit; Thermal conductivity of polymeric composites: a review. 2013 IEEE International Conference on Solid Dielectrics, Bologna, Italy, June 30-July 4, 2013, 678-681. 16. BH, Xie; X, Huang; G, Zhang; High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers. Composites Science and Technology 85: 98-103, 2013. 17. R, Kochetov; Thermal and electrical properties of nanocomposites, including material processing, PhD dissertation, Delft University of Technology, 2012. 18. W, Evans; R, Prasher; J, Fish; P, Meakin; P, Phelan; P, Keblinski; Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. International Journal of Heat and Mass Transfer 51: 1431-1438, 2008. 19. PC, Irwin, Y, Cao, A, Bansal; LS, Schadler; Thermal and mechanical properties of polyimide nanocomposites, IEEE Conference on Electrical Insulation and Dielectric Phenomena, Albuquerque, New Mexico, USA, 2003, 120-123. 20. YS, Xu; DDL, Chung; Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Composites Interfaces 7: 243-256, 2000. 21. W, Yu; H, Xie; A Review on Nanofluids: Preparation, Stability Mechanisms. Journal of Nanomaterials 2012: 1-17, 2012. 22. M, Saha; P, Tambe; SP, P. Kubade; G, Manivasagam; MA, Xavior; V, Umashankar; Effect of non-ionic surfactant assisted modification of hexagonal boron nitride nanoplatelets on the mechanical and thermal properties of epoxy nanocomposites. Composite Interfaces 22: 611-627, 2015. 23. K, Sato; H, Horibe; T, Shirai; Y, Hotta; H, Nakano; H, Nagai; K, Mitsuishi; K, Watari; Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. Journal of Materials Chemistry 20: 2749-2752, 2010. 24. J, Yu; X, Huang; C, Wu; X, Wu; G, Wang; P, Jiang; Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer 53: 471-480, 2012. 25. SH, Hwang; D, Kang; R, Ruoff; HS, Shin; YB, Park; Poly(vinyl alcohol) reinforced and toughened with poly-(dopamine)-treated graphene oxide, and its use for humidity sensing. ACS Nano 8: 6739-6747, 2014. 26. X, Huang; T, Iizuka; P, Jiang; Y, Ohki; T, Tanaka; Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites. The Journal of Physical Chemistry C 116: 13629-13639, 2012. 27. D, Lee; SH, Song; J, Hwang; SH, Jin; KH, Park; BH, Kim; SH, Hong; S, Jeon; Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes. Small 9: 2602-2610, 2013. 28. SH, Song; KH, Park; BH, Kim; YW, Choi; GH, Jun; DJ, Lee; BS, Kong; KW, Paik; S, Jeon; Enhanced thermal conductivity of epoxy graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Advanced Materials 25: 732-737, 2013. 29. Z, Lin; A, Mcnamara; Y, Lin; K, Moon; C, Wong; Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation. Composites Science and Technology 90: 123-128, 2014. 30. H, Zhu; Y, Li; Z, Fang; J, Xu; F, Cao; J, Wan; C, Preston; B, Yang; L, Hu; Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano 2: 3606-3613, 2014, 31. Z, Lin; Y, Liu; K, Moon; C, Wong; Enhanced thermal transport of hexagonal boron nitride filled polymer composite by magnetic field-assisted alignment. Electronic Components & Technology Conference, 2013, 1692-1696. 32. H, Cho; Y, Tokoi; S, Tanaka; H, Suematsu; T, Suzuki; W, Jiang; K, Niihara; T, Nakayama; Modification of BN nanosheets and their thermal conducting properties in nanocomposite film with polysiloxane according to the orientation of BN. Composites Science and Technology 71, 1046-1052, 2011. 33. C, Yuan; B, Xie; M, Huang; R, Wu; X, Luo; Thermal conductivity enhancement of platelets aligned composites with volume fraction from 10% to 20%. International Journal of Heat and Mass Transfer 94: 20-28, 2016. 34. C, Yuan; B, Duan; L, Li; B, Xie; M, Huang; X, Luo; Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets. ACS Applied Materials and Interfaces 7, 13000-13006, 2015. 35. W, Lin; K, Moon; CP, Wong; A combined process of in situ functionalization and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon nanotube–polymer nanocomposites: toward applications as thermal interface materials. Advanced Materials 21: 2421-2424, 2009. 36. CA, Cooper; D, Ravich; D, Lips; J, Mayer; H, D.l Wagner; Distribution and alignment of carbon nanotubes and nanofibrilsin a polymer matrix. Composites Science and Technology 62: 1105-1112, 2002. 37. R, Haggenmueller; HH, Gommans; AG, Rinzler; JE, Fischer; KI, Winey; Aligned single-wall carbon nanotubes in composites by meltprocessing methods. Chemical Physics Letters 330: 219-225, 2000. 38. Z, Kuang; Y, Chen; Y, Lu; L, Liu; S, Hu; S, Wen; Y, Mao; L, Zhang; Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity. Small. 11: 1655-1659, 2015. 39. L, Lanticse; Y, Tanabe; K, Matsui; Y, Kaburagi; K, Suda; M, Hoteida; M, Endo; E, Yasuda; Shear-induced preferential alignment of carbon nanotubes resulted in anisotropic electrical conductivity of polymer composites. Carbon 44: 3078-3086, 2006. 40. LM, Veca; MJ, Meziani; W, Wang; X, Wang; FS, Lu; PY, Zhang; Y, Lin; R, Fee; JW, Connell; YP, Sun; Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Advanced Materials 21: 2088-2092, 2009.



فایل مقاله
تعداد بازدید: 566
تعداد دریافت فایل مقاله : 19



طراحی پرتال|طراحی پورتالطراحی پرتال (طراحی پورتال): آرانا نتورک