شماره 46 - بهار 1396
ICNS7
شماره 47-تابستان 1396
فهرست

بررسی روشهای سنتز نانوفوتوکاتالیست دی اکسید تیتانیوم بر پایه سیلیکا بفرم آئروژل و میزان کارایی آن در فرایند تخریب فوتوکاتالیستی

نشریه: شماره 44- پاییز 1395 - مقاله 7   صفحات :  45 تا 51



کد مقاله:
44-07

مولفین:
ندا شیرزاد: دانشگاه سمنان - نانوفناوری
نرجس کرامتیدانشکده نانوفناوری


چکیده مقاله:

همزمان با افزایش جمعیت جهان و سرعت صنعتی سازی، دفع پساب‌های صنعتی خطراتی را بر محیط زیست تحمیل می‌کند که در حال تبدیل شدن به بزرگترین نگرانی برای توسعه پایدار جامعه انسانی است. تصفیه پساب، هدف ضروری برای حفظ اکوسیستم جهانی و بهبود کیفیت محیط زیست است. روش‌های متعددی برای حذف آلاینده‌ها از پساب‌ها بکار گرفته شده است. در میان آنها، فرایند تخریب فوتوکاتالیستی به عنوان یکی از روش‌های متداول تصفیه این امکان را فراهم می‌آورد که طیف وسیعی از آلودگی‌های آلی را طی واکنش‌های سریع و در شرایط ملایم به آب و دی اکسید کربن تبدیل کند. از میان فوتوکاتالیست‌ها، دی اکسید تیتانیوم بیشتر مورد توجه قرار گرفته است. از آنجایی که عمدتا واکنش‌ها در سطح فوتوکاتالیست رخ می‌دهند، یک فوتوکاتالیست خوب لازم است دارای مساحت سطح بالای در دسترس برای جذب و تخریب آلاینده‌ها باشد. با این حال، ظرفیت جذب ضعیف ناشی از مساحت سطح پائین تیتانیای تجاری، همچنین شکل‌گیری سریع کلوخه‌ها در سوسپانسیون‌ها بازدهی فوتوکاتالیست را محدود می‌کند. یکی از روش‌های کارامد به منظور افزایش مساحت سطح ویژه و ظرفیت جذب، توزیع گونه‌های تیتانیا بر روی سطح یک پایه متخلخل مانند آئروژل سیلیکا است. آئروژل سیلیکا علاوه بر این که یک پایه قوی و پایدار با مساحت سطح بالا است، رشد دانه‌ها و همچنین تغییر شکل فازی از آناتاز به روتیل طی فرایند کلسینه شدن را مهار و محدود کرده و بنابراین سبب افزایش قدرت فوتوکاتالیستی دی اکسید تیتانیوم می‌گردد.


Article's English abstract:

As the world´s population and rapid industrialization, industrial wastewater disposal poses environmental risks that has become the biggest concern for the sustainable development of human society. Wastewater treatment, an essential goal to keep global ecosystem and improve the quality of the environment. Various methods have been used to remove contaminants from wastewater. Of the photocatalysts, titanium dioxide has been more attention. Since mainly photocatalytic reaction on the surface occur, it is necessary a good photocatalysts with high surface area available for absorption and may degrade the pollutants. However, the weak absorptive capacity of low surface area titania business, as well as the rapid formation of aggregates in a suspension limits the efficiency of photocatalysts. One of the effective ways to enhance the specific surface area and adsorption capacity, titania species distribution on the surface of a porous base silica airgel is like.


کلید واژگان:
نانو فوتوکاتالیست دی اکسید تیتانیوم، سیلیکا، آئروژل، سل-ژل

English Keywords:
Titanium dioxide nanophotocatalyst, Silica, Aerogel, Sol-Gel

منابع:
1. G, Odukkathil; N, Vasudevan; Toxicity and bioremediation of pesticides in agricultural soil. Reviews in Environmental Science and Biotechnology 12 (4):421-444, 2013. 2. JM, Prodanovic; VM, Vasic; Application of membrane processes for distillery wastewater purification: a review. Desalination and Water Treatment 51 (16-18):3325–3334, 2013. 3. F, Saadati; N. Keramati; M, Mehdipour Ghazi; Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: A review. Critical Reviews in Envirnomental Science and Technology 46 (8): 757-782, 2016. 4. N, Keramati; N, Fallah; B, Nasernejad; Application of response surface methodology for optimization of operational variables in photodegradation of aqueous styrene under visible light. Desalination and Water Treatment 19239-19247, 2015. 5. N, Keramati; N, Fallah; B, Nasernejad; Photocatalytic degradation of styrene in aqeoues solution: Central composite design optimization. Journal of Dispersion Science and Technology 35: 1543-1550, 2014. 6. J, Chen; L, Eberlein; CH, Langford; Pathways of phenol and benzene photooxidation using TiO2 supported on a zeolite. Journal of Photochemistry and Photobiology A: Chemistry 148: 183, 2002. 7. AC, Pierre; GM, Pajonk; Chemistry of Aerogels and Their Applications. Chem. Rev 102 (11):4243–4266, 2002. 8. Y, Hendrix; A, Lazaro; Q, Yu; J, Brouwers; Titania-Silica Composites: A Review on the Photocatalytic Activity and Synthesis Methods. World Journal of Nano Science and Engineering 5 (4):161-177, 2015. 9. H, Maleki; Recent Advances in Aerogels for Environmental Remediation Applications. Chemical Engineering Journal 300 (15):98–118, 2016. 10. Y, Yu; M, Zhu; W, Liang; S, Rhodes; J, Fang; Synthesis of Silica-Titania Composite Aerogel Beads for the Removal of Rhodamine B in Water. RSC Advances 5 (89):72437-72443, 2015. 11. YN, Kim; GN, Shao; SJ, Jeon; SM, Imran; PB, Sarawade; HT, Kim; Sol–gel synthesis of sodium silicate and titanium oxychloride based TiO2–SiO2 aerogels and their photocatalytic property under UV irradiation. Chemical Engineering Journal 231: 502–511, 2013. 12. H, Xu; P, Zhu; L, Wang; Z, Jiang; Sh, Zhao; Structural Characteristics and Photocatalytic Activity of Ambient Pressure Dried SiO2/TiO2 Aerogel Composites by One-step Solvent Exchange/Surface Modification. Journal of Wuhan University of Technology-Mater. Sci. Ed. 31 (1):80–86, 2016. 13. D, Sanli; C, Erkey; Monolithic Composites of Silica Aerogels by Reactive Supercritical Deposition of Hydroxy-Terminated Poly(Dimethylsiloxane). ACS. Appl. Mater 5 (22):11708-11717, 2013. 14. L, Franzel; C, Wingfield; MF, Bertino; S, Mahadik-Khanolkarb; N, Leventis; Regioselective Cross-Linking of Silica Aerogels with Magnesium Silicate Ceramics. J. Mater. Chem. A 1 (19): 6021-6029, 2013. 15. K, Brodzik; J, Walendziewski; M, Stolarski; L, Van Ginneken; K, Elst; V, Meynen; The influence of preparation method on the physicochemical properties of titania–silica aerogels: Part two. J Porous Mater 15 (5):541–549, 2008. 16. H, Long Wang; W, Zhen Liang; W, Feng Jiang; Solar photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol (DNBP) using TiO2/SiO2 aerogel composite photocatalysts. Materials Chemistry and Physics 130 (3): 1372– 1379, 2011. 17. ZD, Li; HL, Wang; XN, Wei; XY, Liu; YF,Yang; WF, Jiang; Preparation and photocatalytic performance of magnetic Fe3O4@TiO2 core-shell microspheres supported by silica aerogels from industrial fly ash. Journal of Alloys and Compounds 659:240–247, 2016. 18. J, Aguado; R.V, Grieken; Marı´a-Jose´ Lo´pez-Mun˜oz; J, Maruga´n; A comprehensive study of the synthesis, characterization and activity of TiO2 and mixed TiO2/SiO2 photocatalysts. Applied Catalysis A: General, 312: 202–212, 2006. 19. F, Shi; T, Yu; S-C, Hu; J-X, Liu; L, Yu; S-H, Liu; Synthesis of highly porous SiO2–(WO3)x_TiO2 composite aerogels using bacterial cellulose as template with solvothermal assisted crystallization. Chemical Engineering Journal 292:105–112, 2016. 20. G, Zu; J,Shen; W,Wang; L, Zou; Y, Lian; Z, Zhang; Silica-Titania Composite Aerogel Photocatalysts by Chemical Liquid Deposition of Titania onto Nanoporous Silica Scaffolds. ACS Appl. Mater. Interfaces 7 (9):5400–5409, 2015.

English References:
1. G, Odukkathil; N, Vasudevan; Toxicity and bioremediation of pesticides in agricultural soil. Reviews in Environmental Science and Biotechnology 12 (4):421-444, 2013. 2. JM, Prodanovic; VM, Vasic; Application of membrane processes for distillery wastewater purification: a review. Desalination and Water Treatment 51 (16-18):3325–3334, 2013. 3. F, Saadati; N. Keramati; M, Mehdipour Ghazi; Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: A review. Critical Reviews in Envirnomental Science and Technology 46 (8): 757-782, 2016. 4. N, Keramati; N, Fallah; B, Nasernejad; Application of response surface methodology for optimization of operational variables in photodegradation of aqueous styrene under visible light. Desalination and Water Treatment 19239-19247, 2015. 5. N, Keramati; N, Fallah; B, Nasernejad; Photocatalytic degradation of styrene in aqeoues solution: Central composite design optimization. Journal of Dispersion Science and Technology 35: 1543-1550, 2014. 6. J, Chen; L, Eberlein; CH, Langford; Pathways of phenol and benzene photooxidation using TiO2 supported on a zeolite. Journal of Photochemistry and Photobiology A: Chemistry 148: 183, 2002. 7. AC, Pierre; GM, Pajonk; Chemistry of Aerogels and Their Applications. Chem. Rev 102 (11):4243–4266, 2002. 8. Y, Hendrix; A, Lazaro; Q, Yu; J, Brouwers; Titania-Silica Composites: A Review on the Photocatalytic Activity and Synthesis Methods. World Journal of Nano Science and Engineering 5 (4):161-177, 2015. 9. H, Maleki; Recent Advances in Aerogels for Environmental Remediation Applications. Chemical Engineering Journal 300 (15):98–118, 2016. 10. Y, Yu; M, Zhu; W, Liang; S, Rhodes; J, Fang; Synthesis of Silica-Titania Composite Aerogel Beads for the Removal of Rhodamine B in Water. RSC Advances 5 (89):72437-72443, 2015. 11. YN, Kim; GN, Shao; SJ, Jeon; SM, Imran; PB, Sarawade; HT, Kim; Sol–gel synthesis of sodium silicate and titanium oxychloride based TiO2–SiO2 aerogels and their photocatalytic property under UV irradiation. Chemical Engineering Journal 231: 502–511, 2013. 12. H, Xu; P, Zhu; L, Wang; Z, Jiang; Sh, Zhao; Structural Characteristics and Photocatalytic Activity of Ambient Pressure Dried SiO2/TiO2 Aerogel Composites by One-step Solvent Exchange/Surface Modification. Journal of Wuhan University of Technology-Mater. Sci. Ed. 31 (1):80–86, 2016. 13. D, Sanli; C, Erkey; Monolithic Composites of Silica Aerogels by Reactive Supercritical Deposition of Hydroxy-Terminated Poly(Dimethylsiloxane). ACS. Appl. Mater 5 (22):11708-11717, 2013. 14. L, Franzel; C, Wingfield; MF, Bertino; S, Mahadik-Khanolkarb; N, Leventis; Regioselective Cross-Linking of Silica Aerogels with Magnesium Silicate Ceramics. J. Mater. Chem. A 1 (19): 6021-6029, 2013. 15. K, Brodzik; J, Walendziewski; M, Stolarski; L, Van Ginneken; K, Elst; V, Meynen; The influence of preparation method on the physicochemical properties of titania–silica aerogels: Part two. J Porous Mater 15 (5):541–549, 2008. 16. H, Long Wang; W, Zhen Liang; W, Feng Jiang; Solar photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol (DNBP) using TiO2/SiO2 aerogel composite photocatalysts. Materials Chemistry and Physics 130 (3): 1372– 1379, 2011. 17. ZD, Li; HL, Wang; XN, Wei; XY, Liu; YF,Yang; WF, Jiang; Preparation and photocatalytic performance of magnetic Fe3O4@TiO2 core-shell microspheres supported by silica aerogels from industrial fly ash. Journal of Alloys and Compounds 659:240–247, 2016. 18. J, Aguado; R.V, Grieken; Mar?´a-Jose´ Lo´pez-Mun˜oz; J, Maruga´n; A comprehensive study of the synthesis, characterization and activity of TiO2 and mixed TiO2/SiO2 photocatalysts. Applied Catalysis A: General, 312: 202–212, 2006. 19. F, Shi; T, Yu; S-C, Hu; J-X, Liu; L, Yu; S-H, Liu; Synthesis of highly porous SiO2–(WO3)x_TiO2 composite aerogels using bacterial cellulose as template with solvothermal assisted crystallization. Chemical Engineering Journal 292:105–112, 2016. 20. G, Zu; J,Shen; W,Wang; L, Zou; Y, Lian; Z, Zhang; Silica-Titania Composite Aerogel Photocatalysts by Chemical Liquid Deposition of Titania onto Nanoporous Silica Scaffolds. ACS Appl. Mater. Interfaces 7 (9):5400–5409, 2015.



فایل مقاله
تعداد بازدید: 510
تعداد دریافت فایل مقاله : 21



طراحی پرتال|طراحی پورتالطراحی پرتال (طراحی پورتال): آرانا نتورک