شماره 46 - بهار 1396
ICNS7
شماره 47-تابستان 1396
فهرست

کاهش گرافن اکسید با استفاده از واکنش گرهای طبیعی و روش های جایگزین

نشریه: شماره 43- تابستان 1395 - مقاله 1   صفحات :  5 تا 12



کد مقاله:
43-01

مولفین:
صدیقه فلاحی: دانشگاه کاشان - پژوهشکده نانو
نفیسه شریفی: دانشگاه کاشان -


چکیده مقاله:

امروزه کاهش گرافن اکسید با استفاده از واکنش گر های طبیعی و روش های سازگار با محیط زیست، توجه بسیاری از محققان را به خود جلب کرده و منجر به تولید انبوه گرافن برای کاربردهای تجاری شده است. در این مقاله، پیشرفت های اخیر در کاهش گرافن اکسید GO با استفاده از واکنش گر ها و روش های سازگار با محیط زیست معرفی شده است. این روش ها به دو گروه استفاده از واکنش گرهای کاهنده با پایه ی طبیعی و روش های جایگزین دسته بندی می شوند. هم چنین در این مقاله انواع واکنش گر ها و روش های کاهنده ی GO نام برده و مزایا و معایب آن ها بررسی شده است. با این حال هم چنان تحقیقات بیش تری برای دستیابی به راه کارهای سودمند و سازگار با محیط زیست برای سنتز GO مورد نیاز است.


Article's English abstract:

Today, reduction of graphene oxide using nature-based reagents and environmentally friendly methods, has attracted the attention of many researchers and has led to the mass production of graphene for commercial applications. In this paper, recent progress in reduction of graphene oxide GO using nature-based reagents and environmentally friendly methods have been introduced. These methods are classified into two groups: use of nature-based reagents and alternative methods. This review mentions some types of reagents and procedures reducing GO, and also their advantages and disadvantages have been investigated. However, more research is still needed to develop optimal, environment-friendly strategies for the synthesis of GO.


کلید واژگان:
گرافن اکسید کاهش یافته، واکنش گرهای کاهنده، روش زیست سازگار

English Keywords:
reduced graphene oxide, reducer reagents, environmentally friendly method

منابع:
ندارد.

English References:
[1] Geim AK, Novoselov KS. The rise of graphene. Nat Mater 2007;6:183–91. [2] Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev 2010;110:132–45. [3] Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008;321:385–8. [4] Abanin DA, Levitov LS. Quantized transport in graphene p-n junctions in a magnetic field. Science 2007;317:641–3. [5] Oostinga JB, Heersche HB, Liu X, Morpurgo AF, Vandersypen LMK. Gate-induced insulating state in bilayer graphene devices. Nat Mater 2008;7:151–7. [6] Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 2006;16:155–8. [7] Paredes JI, Villar-Rodil S, Fernández-Merino MJ, Guardia L, Martínez-Alonso A, Tascón, JMD. Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide. J Mater Chem 2011;21:298–306. [8] Pei S, Cheng H-M. The reduction of graphene oxide. Carbon 2012;50:3210-28. [9] Eda G, Chhowalla M. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 2010;22:2392–415. [10] Choudhary S, Mungse HP, Khatri OP. Hydrothermal deoxygenation of graphene oxide: chemical and structural evolution. Chem Asian J 2013;8(9):2070–8. [11] Lomeda JR, Doyle CD, Kosynkin DV, Hwang WF, Tour JM. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc 2008;130: 16201–6. [12] Stankovich S, Piner RD, Nguyen ST, Ruoff RS. Synthesis and exfoliation of isocyanatetreated graphene oxide nanoplatelets. Carbon 2006;44:3342–7. [13] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007;45:1558–65. [14] Long D, Li W, Qiao W, Miyawaki J, Yoon S-H, Mochida I, et al. Graphitization behaviour of chemically derived graphene sheets, Nanoscale 2011;3:3652-56. [15] Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X. Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem Mater 2010;22(7):2213–8. [16] Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S. Reduction of graphene oxide via Lascorbic acid. Chem Commun 2010;46:1112-4. [17] Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodi S, Solís-Fernández P, MartínezAlonso A, et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 2010;114(14):6426–32. [18] Fernandez-Merino MJ, Villar-Rodil S, Paredes JI, Solis-Fernandez P, Guardia L, Garcia R, et al. Identifying efficient natural bioreductants for the preparation of graphene and graphene-metal nanoparticle hybrids with enhanced catalytic activity from graphite oxide. Carbon 2013;63:30–44. [19] Zhu C, Guo S, Fang Y, Dong S. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 2010;4:2429–37. [20] Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A. The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J Mater Chem 2012;22:13773–81. [21] Kim YK, Kim MH, Min DH. Biocompatible reduced graphene oxide prepared by using dextran as a multifunctional reducing agent. Chem Commun 2011;47:3195–7. [22] Chen D, Li L, Guo L. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Nanotechnology 2011;22:325601. [23] Bose S, Kuila T, Mishra AK, Kim NH, Lee JH. Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J Mater Chem 2012;22:9696–703. [24] Ma J, Wang X, Liu Y, Wu T, Liu Y, Guo Y, et al. Reduction of graphene oxide with Llysine to prepare reduced graphene oxide stabilized with polysaccharide polyelectrolyte. J Mater Chem A 2013;1:2192–201. [25] Li J, Xiao G, Chen C, Li R, Yan D. Superior dispersions of reduced graphene oxide synthesized by using gallic acid as a reductant and stabilizer. J Mater Chem A 2013;1:1481–7. [26] Liu J, Fu S, Yuan B, Li Y, Deng Z. Toward a universal "adhesive nanosheet" for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J Am Chem Soc 2010;132:7279–81. [27] Pham TA, Kim JS, Kim JS, Jeong YT. One-step reduction of graphene oxide with Lglutathione. Colloids Surf A 2011;384:543–8. [28] Akhavan O. Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon 2015;81:158–66. [29] Guo C, Book-Newell B, Irudayaraj J. Protein-directed reduction of graphene oxide and intracellular imaging. Chem Commun 2011;47:12658–60. [30] Lei Z, Lu L, Zhao XS. The electrocapacitive properties of graphene oxide reduced by urea. Energy Environ Sci 2012;5:6391–9. [31] Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 2008;20:4490–3. [32] Chen W, Yan L. Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure, Nanoscale 2010;2:559-63. [33] Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP. Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 2009;21:2950–6. [34] Ramesha GK, Sampath S. Electrochemical reduction of oriented graphene oxide films: an in situ raman spectroelectrochemical study. J Phys Chem C 2009;113:7985–9. [35] Shao Y, Wang J, Engelhard M, Wang C, Lin Y. Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mater Chem 2010;20:743–8.



فایل مقاله
تعداد بازدید: 678
تعداد دریافت فایل مقاله : 39



طراحی پرتال|طراحی پورتالطراحی پرتال (طراحی پورتال): آرانا نتورک